HOME MECHANICAL VENTILATION IN CANADA:

WHERE WE WERE AND WHERE WE ARE NOW

Karen Rimmer, Respirology, Calgary

Financial Interest Disclosure

(over the past 24 months)

Karen Rimmer

I have no conflict of interest.

Objectives

- To understand the development of HMV in Canada
- To appreciate regional differences
- To be aware of current guidelines for HMV and plans and challenges of upcoming revision

Hospital to home for post polio pts Where it all started...

Why home?

- Initially: QOL
- NOW:
 - Pressure on acute and LTC beds
 - Cost
 - Availability of small inexpensive equipment
 - Ultimately though....QOL

Prevalence of HMV

- \blacksquare Eurovent 2005 = 6.6/100,000
- National Canadian survey 2015 = 12.9/100,000
 - 18% invasive (recent data suggests less invasive starts)
 - ■21% children
 - Marked variability in practice patterns

Prevalence

- Increasing prevalence over time
 - Patients living longer
 - Increasing numbers from the pediatric world
 - Obesity requiring NIV
 - Champions raising awareness
 - Awareness of the benefits eg in ALS UK survey→3.4 fold rise in 12 years (2000 to 2012)

Incidence of Ventilation in Ontario

Povitz, Respiratory Care April 2018; 63(18),380.

Fig. 1. Incidence of newly approved assistive device program ventilator applications per 100,000 adults \geq 18 y old. P < .001 for trend. Incidence was calculated as the number of new approvals/fiscal year/100,000 adults \geq 18 y old based on population.

Back when....and now

Back when....

- Ventilation occurred when daytime hypercapnia found
- Studies focused on predictors of daytime hypercapnia

Now...

- •Trend towards earlier ventilation → improve outcomes?
- Studies looking at predictors of nocturnal hypoventilation
- Studies looking at timing of initiation to improve outcomes

CTS HMV guideline 2011

- Recognized variability in practice and need for standardization
- Recognized differences in patients with different diagnoses (kyphoscoliosis ≠ ALS ≠ DMD)
- Organised according to disease process
- Common themes were ethics, transition, clearance
- Quality of the literature was NOT high
- Acknowledged gaps and areas requiring further research
- Surveys since suggest that adoption of the guideline may be suboptimal

Citations, but are the "worker bees" looking at it?

- Home Mechanical Ventilation: A Canadian Thoracic
 Society Clinical Practice Guideline 2011 68 citations
- Optimizing Pulmonary Rehabilitation in Chronic Obstructive Pulmonary Disease – Practical Issues: A Canadian Thoracic Society Clinical Practice Guideline 2011 - 53 citations
- Canadian Thoracic Society 2012 Guideline Update:
 Diagnosis and Management of Asthma in Preschoolers,
 Children and Adults -115 citations

Provincial and regional variability (and International)

- Prevalence varies from province to province recent national survey (Rose et al. 2015)
- Funding models for equipment and services variable
- Much relies on regional expertise and "history" of ventilation regionally

Current trends

- Towards more programmatic approach
 - Defined structure improves transitions and errors
- Increase in community care
 - Strategies to avoid admission
 - Includes increased community support
 - Telehealth and remote monitoring
- NIV increasing and invasive ventilation decreasing

Current issues

- Poor knowledge of HMV patients amongst healthcare providers → puts HMV pts at risk during admissions and transports by EMS
- Uncommon technology such as pacing for the diaphragm

CTS HMV guidelines 2018/2019

- 7 years since last publication
- Time for a revision
- Priority areas:
 - Clearance
 - ALS
 - COPD
 - **■**OHS

Amyotrophic lateral sclerosis

- Focus more on patient factors or testing that predict survival with NIV
- Predictors of tolerance to NIV
- Assessing models of initiation and monitoring of NIV
- RCTs addressing diaphragm pacing
- RCTs addressing respiratory muscles training
- Attempts to address timing or criteria for initiation

DiPALS UK- NIV±Pacer

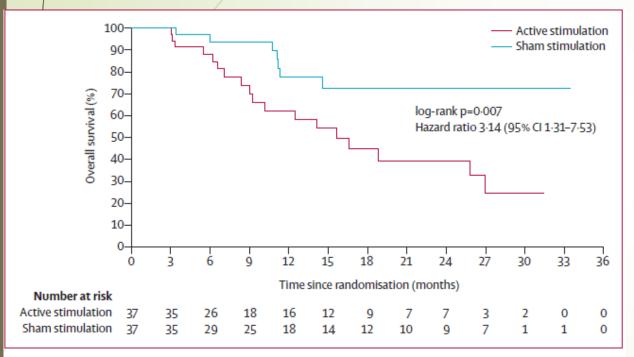


Figure 3: Overall tracheostomy-free survival

Because none of the patients had tracheostomy, overall survival and tracheostomy-free survival were identical.

Patients not included had either died before randomisation or were still alive but with shorter follow-up

(28 patients censored before 15 months).

RespistimALS French-NIV/pacer

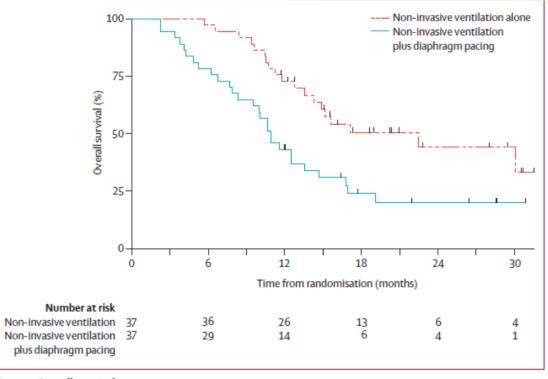


Figure 2: Overall survival

Vertical lines indicate consored nationts

COPD and NIV

- Clear evidence for use of NIV in acute exacerbation
- If it works in AECOPD → why not for chronic use?
- GOAL?

Prolong survival

Improve QOL

Decrease hospitalizations and hence costs

RCTs

Author	Timing	Population	Initiation	Settings
Struik 2014	>48 hrs	FEV1~26% pCO2~59	Inpt	IPAP 19 RR15
Kohnlein 2014	>4 weeks	FEV1~27% pCO2~58	Inpt	IPAP 21.6 RR 16
Murphy 2017	2-4 weeks	FEV1~24% pCO2~59	Inpt	IPAP 24 RR 14

Mortality: Kohnlein

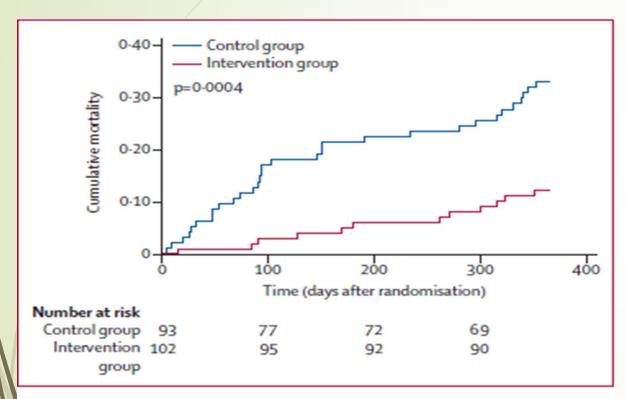
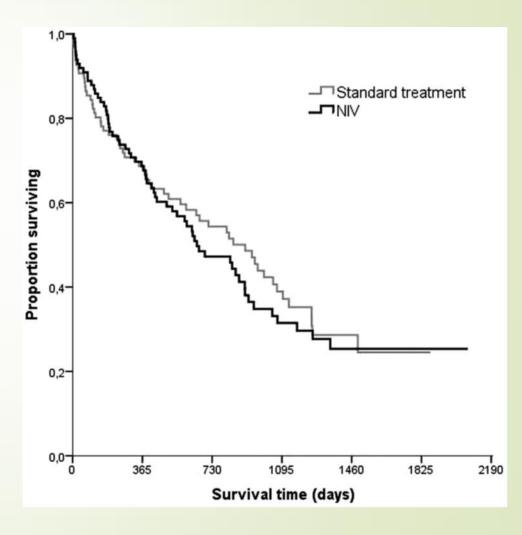



Figure 2: Kaplan-Meier estimate of cumulative all-cause mortality during the first year after randomisation (primary outcome)

The p value results from a log-rank test of the between-group difference.

Survival: Struik

Readmission or death

Struik: 2014

Murphy: 2017

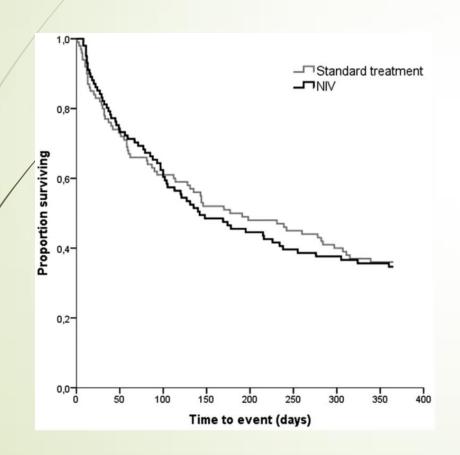
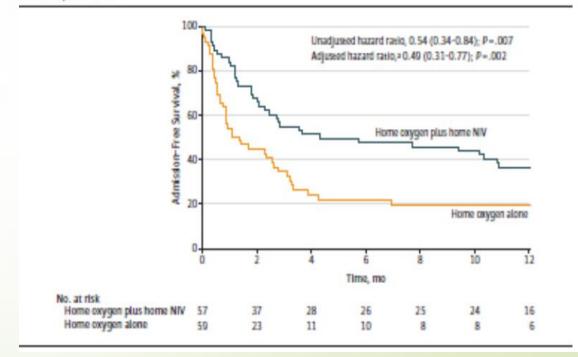



Figure 2. Kaplan-Meler Survival Plot of Time to Readmission or Death From Randomization to the End of Trial Follow-up at 1 Year

COPD conclusions

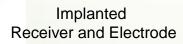
- Recent studies are not consistent between studies
- Reduce mortality? Maybe! 1/3 recent studies
- Reduced admissions? Maybe 1/3 recent studies
- HRQOL? Not convincingly different with NIV
- NOTE: VERY select population could fit these studies very severe (FEV1~25%, pCO2>56, recurrent exacerbator requiring NIV acutely)
- Guideline committee has a tough job here!

Pacing of the phrenic nerve/diaphragm

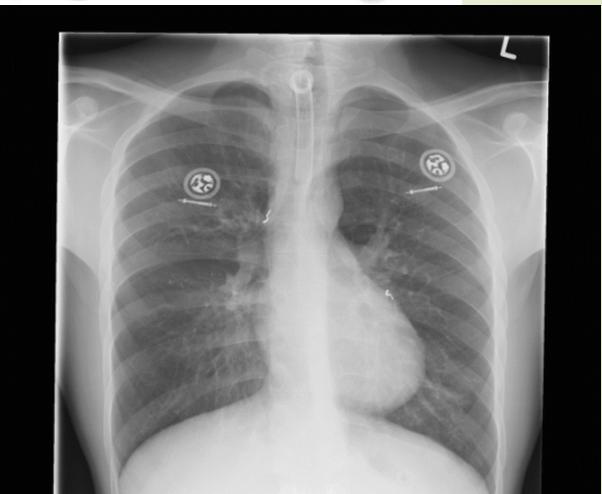
- Interesting and promising for selected populations
- Many respirologists are interested in seeking out this option, but are unaware of indications
 - Eg "I have a patient with bilateral phrenic palsy with diaphgragm paralysis, would you please see for diaphragm pacing?"

Advantages of pacing over chronic vent

- Distribution to dependent lung (post/basal) is better
- Speech is better
- Reduced noise
- Sense of smell preserved
- Cosmetic
- Mobility
- Reduced costs of care

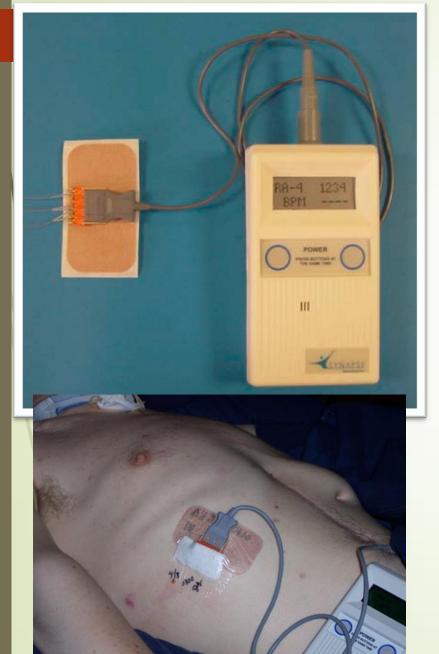
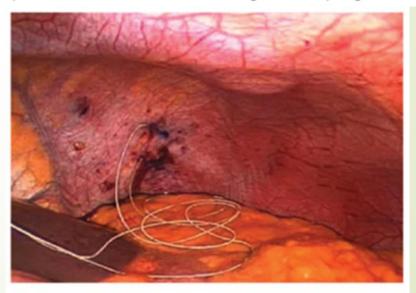

Who?

- High spinal cord injury
- Central hypoventilation acquired or congenital
- MUST HAVE INTACT PHRENIC MOTOR NEURONS/NERVES


External Transmitter

External Antenna

Synapse unit

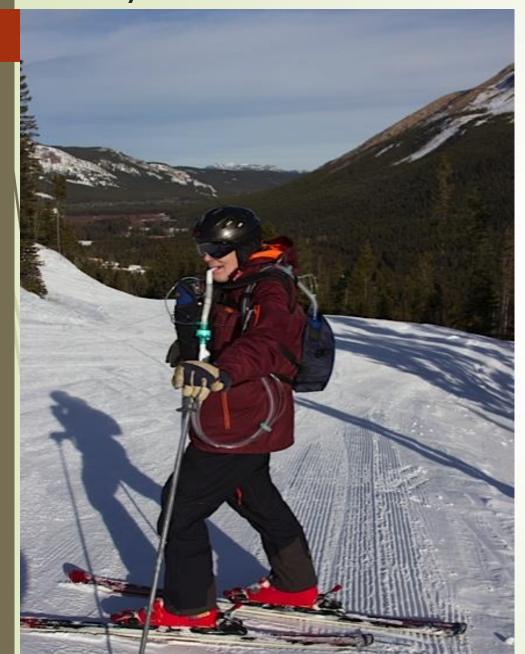


Figure 1 - Laparoscopic implantation of an intra-diaphragm phrenic stimulation electrode in the right hemidiaphragm.

Figure 2 - Laparoscopic view of an intra-diaphragm phrenic stimulation electrode successfully implanted in the left hemi-diaphragm.

Why we do this HMV stuff!

1 and 3 yr trends in mortality

Povtiz 2018, Respiratory Care

Years	Incident HMV users (N)	Crude 1 year mortality	Crude 3 year mortality		
Ages: 18 – 39					
2000 - 2003	129	8.53	18.60		
2004 - 2007	139	8.63	15.11		
2008 - 2012	228	8.33	14.04		
		P=1.00	P=0.51		
Ages: 40 – 64					
2000 - 2003	417	13.91	30.46		
2004 - 2007	669	11.81	26.61		
2008 - 2012	1343	15.93	25.99		
		P=0.04	P=0.19		
Ages: 65 and older					
2000 - 2003	281	24.56	49.82		
2004 - 2007	453	26.93	46.36		
2008 - 2012	1011	25.52	43.82		
		P=0.75	P=0.18		