Cross Canada Rounds Long Case Presentation

Hasan Ghandourah Pediatric Respiratory medicine 1st year fellow Fellow

Overview

- Case Presentation
- Diagnosis
- Review of the current literature

Case

- 13 year old girl with:
 - Chest tightness and exertional dyspnea, without improvement on inhaled corticosteroids and short acting beta agonists
 - Unremarkable exam, other than mild tachypnea and labored breathing on exam.
 - Restrictive defect on spirometry revealed restriction, with diffusion impairment
 - Chest CT showing ground glass opacity and intralobular septal thickening (crazy paving)
 - Bronchoscopy revealed positive PAS staining, with cholesterol and myelin inclusions

Pulmonary Alveolar Proteinosis (PAP)

Objectives

- Understand the pathophysiology of PAP
- Differentiate between the Classes of PAP
- To be able to Recognize the clinical presentation
- Identify the Treatment options according to the underlying pathology.

PAP

- First described by Rosen et al in 1958.
- Diffuse lung disease characterized by the accumulation of phospholipo-proteinaceous material in the alveoli.
- Pulmonary infiltrates with varying degrees of hypoxemia.

Pathology

- Surfactant homeostasis:
 - Complex dynamic process involving
 - Alveolar type II cells.
 - Macrophages.

Alveolar Macrophages

- Serving as the front line of cellular defense against respiratory pathogens.
- Important role in uptake, degradation, and recycling of surfactant.
- To do that, they need GM-CSF to:
 - Stimulate the terminal differentiation of alveolar macrophages principally by raising the levels of PU.1.

Mouse models

Knockout mice that were deficient in GM-CSF

Targeted disruption of the gene encoding the Beta chain of the GM-CSF receptor .

 Accumulations of lipoproteinaceous material and large, foamy macrophages in the alveoli.

Reed JA, Ikegami M, Cianciolo ER, et al. Am J Physiol 1999;276:L556-L563.

Mouse models

Knockout mice that were deficient in GM-CSF

GM-CSF

Resulted in resolution of PAP

Targeted disruption of the gene encoding the Beta chain of the GM-CSF receptor in mice.

BMT from normal mice corrected the defective metabolism of surfactant

Resulted in resolution of PAP

Reed JA, Ikegami M, Cianciolo ER, et al. Am J Physiol 1999;276:L556-L563.

Antibodies against GM-CSF

- BAL from patients, inhibited the ability of GM-CSF dependent cell from binding to GM-CSF.
- This inhibitory activity was due to a neutralizing IgG antibody against GM-CSF.

Antibodies against GM-CSF

Classification of PAP

Congenital PAP

- Caused by congenital defects in the surfactant generation or degeneration process.
 - Surfactant protein B, C, or ABCA3 deficiency.
 - Mutation (GM-CSF) receptor α or β .

Secondary PAP

- Develops secondarily to :
 - Rheumatologic/ Autoimmune diseases (e.g.Behcet disease, ADA deficiency)
 - Hematological disorders (e.g. myelodysplastic syndrome)
- Constitutes 6% of PAP.

Autoimmune (Acquired) PAP

- Constitutes 90% of PAP.
- Prevalence of 0.37 per 100,000 people and a median age at diagnosis of 39 years.
- Male : Female ratio 3:1
- 72 % have a history of smoking

Clinical presentation

- Dyspnea is the most common presenting symptom.
- Less commonly,
 - Cough (often trivial).
 - Fever.
 - Chest pain.
 - Hemoptysis, especially if secondary infection is present.

Opportunistic infection in PAP

Pathogen	n (%)
Nocardia ($n = 32$)	
N. asteroides	19 (59%)
N. brasiliensis	1 (3%)
N. farcinica	1 (3%)
Nocardia spp.	11 (34%)
Mycobacteria (n = 28)	
M. tuberculosis	21 (75%)
M. kansasi	4 (14%)
M. avium intracellulare	3 (11%)
Fungi ($n = 15$)	
Aspergillus spp.	4 (27%)
Cryptococcus spp.	5 (33%)
Histoplasma capsulatum	4 (27%)
Aspergillus spp. and Cryptococcus spp.	1 (7%)
Zygomyces	1 (7%)
TOTAL	75

Punatar, Ankit D.; Kusne, Shimon, Holenarasipur R. Journal of Infection, 2012, Vol.65(2),

Clinical presentation

- Physical examination can be unremarkable:
 - Inspiratory crackles 50%.
 - Cyanosis in 25%
 - Digital Clubbing 1/3 of cases.

Laboratory findings

- Routine chemical analysis and urinalysis are usually normal.
- The serum level of LDH is frequently elevated.
- Elevations in the serum levels of:
 - Carcinoembryonic antigen (CEA)
 - Cytokeratin
 - Mucin KL-6

GM-CSF autoantibodies

 The latex-agglutination test has a sensitivity (100 %) and specificity (98 %) for the diagnosis of acquired PAP.

Chest radiograph

DDx of Crazy-Paving

RadioGraphics 2003; 23:1509–1519

Pulmonary function

- Can be normal, but typically have a restrictive pattern.
- Slight impairments in the FVC & TLC.
- Severe reduction of the DLCO.

Hypoxemia

- Widened Alveolar
 – arteriolar gradient.
- This is thought to be due to:
 - Ventilation—perfusion inequality
 - Intrapulmonary Shunting.
 - Septal edema.
 - Interstitial fibrosis has been reported.

Broncho-alveolar Lavage

- The BAL fluid is opaque, milky appearance.
- Large eosinophilic bodies in a background of granular material that stains with (PAS).
 - Large, foamy alveolar macrophages

Electron microscopy

 BALF sediment shows the presence of lamellar bodies and tubular myelin aggregates.

Open-lung biopsy

- The gold standard for the diagnosis of PAP, BUT:
- It is not always required.
- Can be false negative due to sampling error.

Microscopy

- Alveoli are filled with granular, eosinophilic material that stains with PAS.
- The architecture of the lung parenchyma is preserved.

Disease severity

- PFT can be used to assess disease
 - Severity.
 - Progression.
 - Response to treatment.

 P(A-a)O2 gradient on exercise is a better predictor of disease severity.

Therapeutic approaches

- Congenital form of the disorder:
 - Supportive
 - Lung Transplantation
 - BMT / Macrophage Transplantation
- Therapy for secondary PAP:
 - Treatment of the underlying condition

Acquired PAP

- Whole-lung lavage
- GM-CSF therapy
- Rituximab
- Others

Whole-lung lavage

Whole-lung lavage

- A retrospective analysis of 231 cases found clinically significant improvement in :
 - Arterial oxygenation
 - Pulmonary function (FEV1, VC and DLCO).

Whole-lung lavage

The 5 years survival rate was 94±2 % with lavage, as compared with 85±5% without lavage (P=0.04).

Duration of response following lavage

- The median duration of clinical benefit from lavage was 15 months.
- Less than 20% of those patients followed beyond 3 years remaining free of recurrence.

In summary

- WLL is currently a safe procedure in an experienced setting.
- Immediate +ve outcome in >90% of cases.
- Recurrence rate ranging from 30 70%.
- No randomized controlled studies of WLL to determine the optimal strategy.

GM-CSF subcutaneously

- Multiple trials of <u>subcutaneous GM-CSF</u> treatment of patients with acquired PAP.
- Significant effect on:
 - PaO₂.
 - P(A-a)O2.
 - DLCO.
 - CT scan.
 - 6-minutes walking test.

GM-CSF subcutaneously

	Trial	Intervention	Doses/repeats	Duration	Effect in % (patients)
1996	Seymour et al.41	GM-CSF subcutaneously	5 μg/kg/day (7,5–20) [†]	10-26 weeks	36% (n = 14)
2000	Kavuru <i>et al.</i> ⁴²	GM-CSF subcutaneously	250 μg/day; increased to 5-9 μg/kg/day [†]	12 weeks	75% (n = 4)
2002	Bonfield et al. ⁴³	GM-CSF subcutaneously	250 μg/day; increased to 18 μg/kg/day [†]	12-48 weeks	55% (n = 11)
2006	Venkateshiah <i>et al.</i> ⁴⁴	GM-CSF subcutaneously	250 μg/day increased to 5–18 μg/kg/day [†]	12-52 weeks	48% (n = 21)

GM-CSF subcutaneously

- Over all, was effective in about 50 70% of the cases with varying doses and treatment durations.
- Complications are considered minor:
 - Injection-site Erythema & edema
 - Malaise
 - Shortness of breath.
 - Neutropenia has been reported.

GM-CSF inhaled

	Trial	Intervention	Doses/repeats	Duration	Effect in % (patients)
2005 2010	Tazawa <i>et al.</i> ⁴⁵ Tazawa <i>et al.</i> ⁴⁶	GM-CSF inhaled GM-CSF inhaled	250 μg/day; every second week 250 μg/day; every second week for 12 week tapered to 4 days every second week for 12 weeks	24 weeks 24 weeks	100% (n = 3) 62% (n = 39)

Improved:

- Arterial oxygen
- P (A-a)O2
- DLCO, and
- Forced vital capacity

Inhaled GM-CSF

Over all, inhaled GM-CSF was effective in 4/5 patients.

- Complications include:
 - Fever
 - Otitis media
 - Upper respiratory infection
 - Diarrhea

Rituximab

	Trial	Intervention	Doses/repeats	Duration	Effect in % (patients)
	Borie et al.47	IV rituximab	1000 mg day 0 and 15	15 days	100% (n = 1)
2010	Amital et al.48	IV rituximab	rituximab 375 mg/m² administered weekly for 4 weeks	4 weeks	100% (n = 1)
2011	Kavuru <i>et al.</i> ⁴⁹	IV rituximab	1000 mg day 0 and 15	15 days	78% (n = 9)

Improvements were noted in

- P(A-a)O2
- Total lung capacity (TLC)
- High-resolution CT (HRCT) scans

Rituximab

- In conclusion, rituximab shows promising results in most of the treated patients.
- Adverse reactions were minor :
 - Fatigue
 - Headache
 - Dizziness
 - Anorexia
 - Upper respiratory infection

Other therapies

- Plasmapheresis
- Combination Therapy

Objectives

- Understand the pathophysiology of PAP
- Differentiate between the Classes of PAP
- To be able to Recognize the clinical presentation
- Identify the Treatment options according to the underlying pathology.

References

- Dranoff G, Crawford AD, Sadelain M, et al. Science 1994;264:713-6.
- Stanley E, Lieschke GJ, Grail D, et al. Proc Natl Acad Sci U S A 1994;91:5592-6
- Nishinakamura R, Nakayama N, Hirabayashi Y, et al.. Immunity 1995;2:211-22.
- Robb L, Drinkwater CC, Metcalf D, et al. Proc Natl Acad Sci U S A 1995;92:9565-9.
- Rosen SH, Castleman B, Liebow AA. Pulmonary alveolar proteinosis. N Engl J Med 1958;
 258:1123–1142
- Reed JA, Ikegami M, Cianciolo ER, et al. Am J Physiol 1999;276:L556-L563.
- Ruben FL, Talamo TS. Am J Med 1986;80:1187-90.
- Inoue Y, Trapnell BC, Tazawa R, et al. Am J Respir Crit Care Med 2008; 177: 752–762.
- Trapnell BC, Whitsett JA, Nakata K. Pulmonary alveolar proteinosis. N Engl J Med 2003; 349:2527–2539
- Rogers RM, Levin DC, Gray BA, et al. Am Rev Respir Dis 1978;118:255–64.
- Kariman K, Kylstra JA, Spock A. Lung 1984;162:223–31.
- Ramirez RJ, Campbell GD. Ann Intern Med 1965;63:429–441
- Borie R, Debray M, Laine C et al. Eur. Respir. J. 2009; 33: 1503–6.
- Amital A, Dux S, Shitrit D et al.. Thorax 2010; 65: 1025–6.
- Kavuru MS, Malur A, Marshall I et al. Eur. Respir. J. 2011; 38: 1361–7.
- Bonfield TL, Kavuru M, Thomassen MJ. Clin Immunol. 2002;105:817- 20
- Bonfield TL, Kavuru M, Thomassen MJ. Clin Immunol. 2002;105:817-20

