Cross Canada Rounds

March 17, 2016

Chris Gerdung Alberta Children's Hospital Consent was obtained from the family for case presentation

 There are no disclosures relevant to this presentation

Case Presentation

- 8 year old female
 - Immigrated from Eastern Europe 2 months prior to presentation
- Referred to ACH Emergency for assessment of clubbing and cyanosis

History

- 4 year history of progressive SOB with exertion
 - Exercise limitation relative to peers
 - Breaks after 10-20 min of activity
 - Peripheral and central cyanosis with activity
 - Would stop activity and "squat" during activity
- Less energy than peers since 4 yrs of age
- Hepatomegaly noted since 5 yrs of age

Past Medical History

- Term infant, normal perinatal course
- Admitted at 2 yrs transient synovitis
- Pneumonia at 2 yrs of age → PICU (Europe)
 - No intubation
- Treated for latent TB
- Poor concentration and headache
 - No improvement with stimulant
- Nasal surgery for "excess tissue"

- No regular medications
- No known allergies
- Completed primary immunization series (Europe)
 - BCG vaccine at birth and 5 yrs
- o FmHx:
 - Father with joint pain with activity
 - Maternal GM Thyroid dysfunction, arthritis

Pertinent Findings on ROS

- Complaints of vague abdominal pain
- No cough, URTI, wheeze
 - \circ URTI $\sim 2x/yr$
- Occasional epistaxis
- No fevers, weight loss, night sweats
- No animal exposures
- No TB exposures

Physical Exam

- RR: 18, Oxygen Saturations 86-88% on RA
 - Increase to 90-92% on 3L/min via nasal prongs
- Anthropometrics: 97th centile for ht and wt
- Friable Little's area
- Clear, equal breath sounds bilaterally, no adventitial sounds, no increased WOB
- Normal \$1/\$2, no murm. Pulse strong. CR < 2s
- Significant clubbing, perioral cyanosis
- Abdo and Neuro: Benign, uncooperative, immature

What is your differential?

What is your differential?

- Low inspired Partial pressure of Oxygen
- Hypoventilation
- Shunt
 - Arteriovenous malformation
 - Cardiac (right to left shunt)
- V/Q mismatch
 - Congenital malformations
 - Swyer-James Syndrome
- Diffusion
 - Fibrosis
 - Interstitial lung disease
 - Hemoglobinopathy

What investigations would you like?

Previous Investigations

- Positive TST x 2 (4 and 6 yrs of age)
 - CXR not consistent with TB disease
 - Rx with Isoniazid x 6 months
- CBC
 - Hgb 162
 - o Plt 168
 - WBC 9.5

Previous Imaging

- Echo
 - No congenital cardiac malformation
 - Normal LV, RV, Atria
 - Mild Tricuspid atresia
- CT angiography
 - Normal thoracic aorta, normal aortic arch
 - Normal pulmonary arteries and veins
 - SVC normal
 - Parenchymal normal

Does this change your differential?

What investigations would your do next?

Bloodwork

- o CBC:
 - Hgb <u>167</u> (110-157)
 - Hct <u>0.51</u> (0.34-0.46)
 - WBC 7.2
 - o Plt 165
- CRP < 1.0, ESR 1
- Lytes, Cr, Urea: Normal
- ABG: 7.44/35/<u>41</u>/24 (room air)
- Quantiferon Gold: Negative

Liver Panel

- Liver enzymes (ALT, AST, GGT, Alk Phos): Normal
- o Bili: 10 (direct 2)
- Ammonia: <u>115</u> (12-47)
- INR: <u>1.5</u>, PTT <u>39.2</u>
- Albumin: 35
- o Protein: 62

PFTs

- Poor study
 - Exhaled for 1 sec, variable effort, complaints of dyspnea
- SpO2 80% on (room air)

Echocardiogram

- Structurally normal heart
- Good biventricular function
- Normal septal curvature
- No shunts seen

CT

- Chest:
 - Clear lungs, no reticular nodular shadowing
 - No AVM
 - No gas trapping
 - Prominent vascularity
- Abdo (seen on inferior slices of chest CT)
 - Non-enhancing focal lesion seen in the liver
 - Portal vein not visualized

Ultrasound

- Gall bladder, biliary tree, spleen, kidneys normal
- Left hepatic lobe focal lesion
- Unable to visualize portal vein

MRI

- MRI:
 - Congenital absence of main portal vein, with drainage of splenic and mesenteric veins into the prominent IVC
 - Scattered liver lesions, likely regenerative nodular hyperplasia

Working Diagnosis

Abernethy Malformation with presumed Hepatopulmonary syndrome

Hepatopulmonary Syndrome (HPS)

With specific attention on Congenital Portosystemic Shunt (CPSS)

Objectives

- Definition HPS
- Anatomy of CPSS
- Pathophysiology of HPS
- Diagnostic criteria for HPS
- Clinical presentation Clues for Respirologist
- Work up and investigations
- Treatment and prognosis

Definition - HPS

 Clinical condition "characterized by a defect in arterial oxygenation induced by pulmonary vascular dilation in the setting of liver disease"

- Typically consists of 3 aspects:
 - Liver disease (or associated anomaly)
 - Pulmonary vasodilation
 - Oxygenation defect

Liver Disease

- Viral hepatitis
- Autoimmune
- Primary Sclerosing Cholangitis
- NAFLD
- Biliary Atresia
- Portal vein thrombosis
- Metabolic liver disease
- Wilson disease

Noli K, Pediatrics, 2008

Image from: Mushlin, Miller's Anesthesia, 2015

Abnormal Hepatic Blood Flow

- Congenital Portosystemic Shunt
 - Intrahepatic
 - Types 1-5
 - Extrahepatic
 - Type 1 (Abernethy)
 - Type 2

Noli K, Pediatrics, 2008

Image from: Mushlin, Miller's Anesthesia, 2015

Anatomy – Extrahepatic CPSS

Abernethy Malformation

Clinical Associations - CPSS

- Congenital Heart Disease (31%)
 - o ASD, PFO, VSD, PDA, TOF
 - Dextrocardia, Aortic valve stenosis
- Gastrointestinal
 - Nodular liver lesions (22 50%)
 - Heterotaxy, Biliary Atresia, Polysplenia, malrotation, duodenal atresia, annular pancreas
- Skeletal (8%)
- Renal Tract (7%)
- CNS
 - Brain abscess

Pathophysiology - HPS

 Marked dilation of pulmonary capillary vessels

 Angiogenesis, with pulmonary arteriovenous communications

 Reduced vascular tone and compensatory vasoconstriction in response to hypoxemia

Pathologic Mechanisms

- 1. Nitric Oxide
 - Increased pulmonary production of nitric oxide
 - Multiple presumed mechanisms play a role
 - Nitric Oxide Synthase (endogenous and induced)
 - Endothelin-1 and Endothelin-B receptors
 - Bacterial translocation leading to macrophage derived NO
 - o TNF-a
 - cGMP pathways

Pathologic Mechanisms

2. Presumed role of Carbon monoxide

- 3. Angiogenesis
 - Pulmonary accumulation of macrophages leading to increased VEGF
 - Bacterial translocation and TNF-a
 - VEGF also involved in NO production via NOS

Normal

Mixed venous blood Right-to-left shunt Alveolus Diffusion limitation Nonuniform perfusion Ventilation—perfusion mismatch

HPS

Rodriguez-Roisin R, NEJM, 2008

Prevalence of HPS

- Poorly established in pediatrics
 - Estimated at 9-29% in patients with chronic liver disease
 - Some literature suggests increased prevalence (40%) in patients with cirrhosis and portal hypertension

Clinical Manifestations

- Highly variable
 - Asymptomatic, to severe disease with multi-organ involvement
- Non-specific
 - Historic and physical findings often overlap significantly with other respiratory illnesses

Clues on History – For the Respirologist

- Pulmonary:
 - Dyspnea (exertional and at rest)*
 - Often relieved with supine (Platypnea)

CNS

- Changes to mentation, developmental delay, learning difficulties
- Hepatic
 - Jaundice, abdominal pain/distention, mass, bleeding, pruritis
 - Weight gain/loss

Borkar VV, Liver Int, 2015 Raevens S, Liver Int, 2015

Clues on Exam – For the Respirologist

- CNS
 - Behaviour change (irritable, somnolent)
 - Confusion, difficulty concentrating
- Pulmonary
 - Decreased oxygen saturations, tachypnea
 - Orthodeoxia
- oMSK:
 - Spider nevi, digital clubbing*, cyanosis*
- Abdomen:
 - HSM, ascites

Borkar VV, Liver Int, 2015 Raevens S, Liver Int, 2015

Oxygenation defect

Pulmonary Vascular dilation

Liver Disease

- Oxygenation defect
 - PaO2 < 80mmHg, OR
 - AaO2 gradient ≥ 15 mmHg
- Pulmonary Vascular dilation
- Liver Disease

- Oxygenation defect
 - PaO2 < 80mmHg, OR
 - AaO2 gradient ≥ 15 mmHg
- Pulmonary Vascular dilation
 - Positive contrast-enhanced echo, OR
 - Abnormal brain uptake with radioactive lungperfusion scanning
- Liver Disease

- Oxygenation defect
 - PaO2 < 80mmHg, OR
 - AaO2 gradient ≥ 15 mmHg
- Pulmonary Vascular dilation
 - Positive contrast-enhanced echo, OR
 - Abnormal brain uptake with radioactive lungperfusion scanning
- Liver Disease
 - Portal HTN, cirrhosis, CPSS

Severity - HPS

- Mild
 - PaO2 ≥ 80 mmHg
- Moderate
 - PaO2 ≥ 60 to < 80 mmHg
- Severe
 - \bullet PaO2 \geq 50 to < 60 mmHg
- Very Severe
 - PaO2 < 50 mmHg
 - PaO2 < 300 mmHg while on 100% Oxygen

Pulmonary Vascular Dilation

- Contrast enhanced transthoracic echocardiogram
 - Most practical method for detection of pulmonary vasodilation
 - Opacification of left atrium occurs 3-6 cardiac cycles after right atrium
- Trans-esophageal contrast echocardiogram
 - Better able to differentiate borderline cases

Pulmonary Vascular Dilation

- Peripherally administered Technetium-99 labeled aggregated albumin
 - Monitor with lung and body uptake to quantitatively demonstrate shunt
 - Uptake > 6% outside of the lungs confirms vasodilation

Abdominal Imaging

- Ultrasound
 - Initial screen for abnormal vascular communication, or abnormal development
 - Use of doppler to demonstrate flow direction
- CT/MRI +/- angiography
 - Useful for documentation of vasculature
 - Characterizes liver nodules

Bloodwork - Liver Disease

- Chemistry
 - +/- Elevated levels of Ammonia, Galactose
 - +/- Elevated transaminases & bilirubin

Other Investigations?

- High Resolution Chest CT
 - Can be helpful to show complex AVMs
- Pulmonary angiography
 - Typically not useful in HPS, as dilation is diffuse
 - Can be useful if coiling an AVM

Treatment

- Patients with intrahepatic CPSS (Type 2) may close spontaneously within the first year of life
 - If shunts persist, closure should be considered
 - Surgical vs interventional radiology
 - Believed to improve encephalopathy, pulmonary disease, liver masses, hyperammonemia, hypoxemia

Treatment

- For all other causes of HPS, liver transplant is only definitive therapy
 - Improves hypoxemia and pulmonary dilation in all patients
 - > 85% of patients have improvement within 1 year
- No effective medical therapies exist

Prognosis

- Survival directly related to severity of HPS
 - Higher mortality in those with lower PaO2
 - PaO2 < 50 at increased risk

Arguedas MR, Hepatology, 2003 Swanson KL, Hepatology, 2005

Prognosis

- Survival directly related to severity of HPS
 - Higher mortality in those with lower PaO2
 - PaO2 < 50 at increased risk

Arguedas MR, Hepatology, 2003 Swanson KL, Hepatology, 2005

Prognosis

- Prognosis post transplant seems to be better in children
 - One year survival rate of 93%
 - Overall mortality remains at ~28% while accounting for pre-transplant death

Back to our patient...

- Bubble Echo
 - Following injection, contrast appear in left heart 5 beats later
 - Supports presence of pulmonary vascular dilation

Back to our patient...

- Our patient had:
 - Hypoxemia (PaO2: 41, AaO2 Gradient: 45)
 - Vascular dilation (as identified on contrast echo)
 - Congenital absence of the portal vein
- Indicative of <u>severe</u> Hepatopulmonary Syndrome
- Gastroenterology was consulted for assessment of liver transplant, and she currently is awaiting assessment

Thank you for your time

Questions?

References

- Abrams GA, Nanda NC, Dubovsky EV, et al. Use of macro- aggregated albumin lung perfusion scan to diagnose hepato- pulmonary syndrome: a new approach. Gastroenterology 1998; 114: 305–310.
- Al-Hussaini A, Taylor RM, Samyn M, Bansal S, Heaton N, Rela M, et al. Long-term outcome and management of hepatopulmonary syndrome in children. Pediatr Transplant. 2010;14(2):276-82.
- Arguedas MR, Abrams GA, Krowka MJ, et al. Prospective evaluation of outcomes and predictors of mortality in patients with hepatopulmonary syndrome undergoing liver transplantation. Hepatology 2003; 37: 192–197.
- Arguedas MR, Singh H, Faulk DK, et al. Utility of pulse oximetry screening for hepatopulmonary syndrome. Clin Gastroenterol Hepatol 2007; 5: 749–754.
- Alonso-Gamarra E, Parron M, Perez A, Prieto C, Hierro L, Lopez-Santamaria M. Clinical and radiologic manifestations of congenital extrahepatic portosystemic shunts: a comprehensive review. Radiographics. 2011;31(3):707-22.
- Alvarez AE, Ribeiro AF, Hessel G, Baracat J, Ribeiro JD. Abernethy malformation: one of the etiologies of hepatopulmonary syndrome. Pediatr Pulmonol. 2002;34(5):391-4.
- Arguedas MR, Abrams GA, Krowka MJ, Fallon MB. Prospective evaluation of outcomes and predictors of mortality in patients with hepatopulmonary syndrome undergoing liver transplantation. Hepatology. 2003;37(1):192-7.
- Arguedas MR, Drake BB, Kapoor A, Fallon MB. Carboxyhemoglobin levels in cirrhotic patients with and without hepatopulmonary syndrome. Gastroenterology. 2005;128(2):328-33.
- Borkar VV, Poddar U, Kapoor A, Ns S, Srivastava A, Yachha SK. Hepatopulmonary Syndrome in children: a comparative study of non-cirrhotic vs. cirrhotic portal hypertension. Liver Int. 2015;35(6):1665-72.
- o Gupta D, Vijaya DR, Gupta R, et al. Prevalence of hepatopulmonary syndrome in cirrhosis and extrahepatic portal venous obstruction. Am J Gastroenterol. 2001;96(12):3395–3399.
- Krowka MJ, Tajik AJ, Dickson ER, Wiesner RH, Cortese DA. Intrapulmonary vascular dilatations (IPVD) in liver transplant candidates: screening by two-dimensional contrast-enhanced echocardiography. Chest. 1990;97(5):1165–1170
- Lisovsky M, Konstas AA, Misdraji J. Congenital extrahepatic portosystemic shunts (Abernethy malformation): a histopathologic evaluation. Am J Surg Pathol. 2011;35(9):1381-90.
- Martinez GP, Barbera JA, Visa J, et al. Hepatopulmonary syndrome in candidates for liver transplantation. J Hepatol. 2001; 34(5):651–657
- Murray CP, Yoo SJ, Babyn PS. Congenital extrahepatic portosystemic shunts. Pediatr Radiol. 2003;33(9):614-20.
- Mushlin, PS, Gelman, S. In: Miller RD, Cohen NH, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young W, editors. Miller's Anesthesia. Philadelphia: Saunders; 2015: 520-544
- Noli K, Solomon M, Golding F, Charron M, Ling SC. Prevalence of hepatopulmonary syndrome in children. Pediatrics. 2008;121(3):e522-7.
- Park JH, Cha SH, Han JK, Han MC. Intrahepatic portosystemic venous shunt. AJR Am J Roentgenol 1990;155(3):527–528.
- Porres-Aguilar M, Altamirano JT, Torre-Delgadillo A, Charlton MR, Duarte-Rojo A. Portopulmonary hypertension and hepatopulmonary syndrome: a clinician-oriented overview. Eur Respir Rev. 2012;21(125):223-33.
- Raevens S, Geerts A, Van Steenkiste C, Verhelst X, Van Vlierberghe H, Colle I. Hepatopulmonary syndrome and portopulmonary hypertension: recent knowledge in pathogenesis and overview of clinical assessment. Liver Int. 2015;35(6):1646-60.
- Rodriguez-Roisin R, Krowka MJ. Hepatopulmonary syndrome--a liver-induced lung vascular disorder. N Engl J Med. 2008;358(22):2378-87.
- Rolla G, Brussino L, Colagrande P, Dutto L, Polizzi S, Scappaticci E, et al. Exhaled nitric oxide and oxygenation abnormalities in hepatic cirrhosis. Hepatology. 1997;26(4):842-7.
- Schenk P, Fuhrmann V, Madl C, et al. Hepatopulmonary syndrome: prevalence and predictive value of various cut offs for arterial oxygenation and their clinical consequences. Gut. 2002;51(6):853–859
- Schenk P, Schoniger-Hekele M, Fuhrmann V, Madl C, Silberhumer G, Muller C. Prognostic significance of the hepatopulmonary syndrome in patients with cirrhosis. Gastroenterology. 2003;125(4):1042–1052
- Sokollik C, Bandsma RH, Gana JC, van den Heuvel M, Ling SC. Congenital portosystemic shunt: characterization of a multisystem disease. J Pediatr Gastroenterol Nutr. 2013;56(6):675-81.
- Swanson KL, Wiesner RH, Krowka MJ. Natural history of hepatopulmonary syndrome: Impact of liver transplantation. Hepatology. 2005;41(5):1122-9.
- Willis AD, Miloh TA, Arnon R, Iyer KR, Suchy FJ, Kerkar N. Hepatopulmonary syndrome in children is conventional liver transplantation always needed? Clin Transplant. 2011;25(6):849-55.
- Ali S, Plint AC, Klassen TP. Bronchiolitis. In: Wilmott RW, Boat TF, Bush A, Chernick V, Deterding RR, Ratjen F, editors. Kendig & Chernick's Disorders of the Respiratory Tract in Children (Eighth Edition). Philadelphia: W.B. Saunders; 2012. p. 443-52.
- Morgan G, Superina R. Congenital absence of the portal vein: two cases and a proposed classification system for portasystemic vascular anomalies. J Pediatr Surg. 1994;29(9):1239-41.
- Ochs M, O'Brodovich H. 5 The Structural and Physiologic Basis of Respiratory Disease. In: Wilmott RW, Boat TF, Bush A, Chernick V, Deterding RR, Ratjen F, editors. Kendig & Chernick's Disorders of the Respiratory Tract in Children (Eighth Edition). Philadelphia: W.B. Saunders; 2012. p. 35-74.

Liver Nodules in CPSS

- Commonly associated with CPSS (up to 50%)
 - Focal Nodular Hypoplasia
 - Nodular Regenerative Hyperplasia
 - Adenomatous Hyperplasia
 - Hepatoblastoma
 - Hepatocellular Carcinoma

Liver Nodules in CPSS

- Most liver nodules benign
 - Metastatic disease in 4% of patients
- Characteristics of benign regenerative nodules:
 - Multiple
 - Well-defined
 - o Diameter of 0.5 to 4 cm
 - High signal intensity on T1-weighted images (75% of cases)

Screening - HPS

- Pulse oximetry is a non-invasive method for screening for HPS
 - SpO2 of > 96% is a sensitive method for excluding a PaO2 < 70mmHg

