Cross Canada Rounds – Short Cases

Chris Gerdung

Alberta Children's Hospital

February 16, 2017

No disclosures

Consent obtained for presentation of both cases

Case 1

Case Presentation

- 9 year old female
 - Refugee from Syria, living in Turkey prior to arrival

- Upon arrival in Canada, she was asymptomatic
 - History of small volume hemoptysis 1 month prior to arrival

DDx of Cystic Chest Lesion -- BROAD

- Infectious
 - Pneumonia
 - Abscess
 - Tuberculosis
 - Aspergillus
 - Hydatid Cysts

- Vascular lesion
 - Pulmonary Embolus
 - AVM

- Malignancy
 - Pleuropulmonary Blastoma
 - Carcinoma
 - Leiomyosarcoma
 - Neuroblastoma

- Congenital
 - CPAM
 - Bronchogenic Cyst

Past Medical History

- Small volume hemoptysis
 - Initially 3 years ago → "conservative management"
 - Re-occurred 1 month prior to admission
 - Intermittent, sputum streaked with blood
 - Occasional cough, clear sputum with "membrane" within
- Previous liver surgery
 - Resection of 2 "cysts" followed by "6 months of medication"
 - Complete resolution noted on imaging

Physical Examination

- Afebrile, RR: 18, O_2 Sats: 99% on RA
- HR: 90's, BP 90's/60's
- CVS:
 - Normal S_1/S_2 , no murmurs. Well perfused.
- Resp:
 - Equal breath sounds bilaterally. No crackles or wheeze. No clubbing. No increased WOB.
- Abdo:
 - Soft, non tender, no HSM. Scar noted over RUQ.

Work Up - Bloodwork

- Hgb: 115
- WBC: 8.8
 - Eo: 0.2
 - Neut: 4.9
 - Lymph: 3.1

- CRP: 5.4
- ESR: 33 (0-10)

- Lytes: normal
- BUN/Cr: normal
- LDH: 224

- Liver Enzymes: Normal
- Liver Function: Normal

Initial Work Up: Infectious

- Sputum Culture for Mycobacterium:
 - No AFB seen

- Mantoux
 - Negative

Work Up: Abdominal Imaging

- U/S & CT:
 - 2 complex cystic lesions
 - Bi-lobed appearance
 - No rim enhancement
 - No blood flow noted within lesions
 - Cyst density consistent with fluid

Disease Confirmation

- Echinococus Serology:
 - Highly Positive

Echinococcosis

Echinococcosis Etiology

- Caused by 4 species of the Echinococcus family
 - E. granulosus
 - Cystic echinococcosis
 - Worldwide distribution

- E. multillocularis
 - Alveolar echinococcosis
 - Colder climates

Echinococcus Life Cycle

Image from CDC: https://www.cdc.gov/parasites/e chinococcosis/biology.html

E. granulosis: Worldwide Distribution

Cyst Growth

- Hydatid cyst slowly grows over time
 - Common in liver and lung
 - Rate of growth is dependent on surrounding tissue distensibility
 - Typically quoted rate of 1-5cm/yr
- Cysts layers
 - Endocyst
 - Ectocyst
 - Adventitia/Pericyst

Symptoms

- Younger children are more commonly affected
 - Most are asymptomatic
- Tend to occur following cyst rupture
 - Contained
 - Communicating
- Leak of cystic fluid may cause anaphylaxis
- Symptoms:
 - Chest pressure/pain
 - Cough
 - May expectorate cystic elements
 - "Grape skins"

- Wheeze
- Hemoptysis
- Fever
- Malaise

Diagnosis

- Diagnosis depends on:
 - High clinical suspicion
 - History of travel to endemic area
 - Radiographic evidence
 - +/- Presence of cysts elsewhere
 - +/- Special tests
 - +/- Pathology

Radiographic Findings

- Most common finding are cysts
 - Typically occur in lower lobes (60%)
 - Calcification is rare

- Over time:
 - Multiple cysts can form
 - Surrounding lung tissue affected
 - Erosion into surrounding airways
 - Variable degree of rupture/leakage

Influences radiographic findings

Cysts

Crescent Sign

Cumbo Sign Pedrosa et al, Radiographics, 2000

Serpent Sign

Pedrosa et al, Radiographics, 2000

Water Lily Sign

Balikian et al, Am J Roent Radium Ther Nucl Med, 1974 Monod's Sign (Mass within a Cavity)

Special tests

- Serologic testing
 - Enzyme immunoassay
 - Specificity = 91.6%
 - Sensitivity = 97.8%
- Other tests
 - Latex agglutination
 - Indirect hemagglutination
 - Complement fixation
 - Casoni skin test

- Pathology
 - 3 layer cyst
 - Protoscolices

Bronchoscopy

Treatment

Surgical Management

- Mainstay of treatment
- Eradication of parasite and cystic layers
 - Enucleation, wedge resection, lobectomy, pneumonectomy

- Risks/Complications:
 - Anaphylactic reactions
 - Infection: Cyst recurrence, abscess, empyema, sepsis
 - Leaks: Hydro/Pneumothorax

Medical Management

- Indications:
 - Asymptomatic patient
 - Increased surgical morbidity/mortality risk
 - Multiple cysts
 - Disease recurrence not amenable to surgery
 - With intraoperative spillage from cyst
 - Pre-operatively to aid in removal

Benzimidazoles

- Albendazole > Mebendazole
 - Albendazole: 10-15mg/kg/day
 - Mebendazole: 40-60mg/kg/day

- Treat for > 3-6 months
- +/- Addition of Praziquantel
- Contraindications
 - Pregnancy (first Trimester)
 - Large cysts at risk of rupture
 - Chronic liver disease or Bone Marrow suppression

Percutaneous Aspiration

- Typically reserved for hepatic cysts
- Can confirm diagnosis
 - Evidence of protoscolices, hooklets and hydatid membranes

• Increases the risk of anaphylaxis, cysts fluid spillage

Generally not considered first line for therapy

E. granulosus var. canadensis

- Similar life cycle
- More benign disease
 - Less frequently symptomatic
 - Smaller, delicate cysts
 - Potential for spontaneous cure
- Diagnostic approach similar to "typical" variant
- Treatment can consist of observation, medical therapy, or surgical management

Back to our case...

Initiated treatment with Albendazole and Praziquantel x 3 months

- Chest and Abdominal imaging:
 - Improvement in cyst size

- Given that lesions persist, continues on albendazole monotherapy
 - Plan to re-image in 3 months

Questions?

Case 2

Initial History

- 3 year, 8 month old female
 - Chromosomal deletion (9p23)
 - Global developmental delay
 - High Risk B Cell ALL
 - Maintenance phase chemotherapy
- History of febrile x 4 days, with cough and rhinorrhea
 - Not neutropenic

Deterioration

- Developed increased WOB
- Initial vitals:
 - <u>Temp</u>: 38°C <u>HR</u>: 167 <u>BP</u>: 95/52 <u>RR</u>: 60 <u>O2 Sats</u>: 80% on RA
- Exam:
 - Appeared unwell, dusky, tired
 - Increased WOB, grunting and suprasternal indrawing
 - Normal cardiac sounds, no murmur. Brisk capillary response
 - No organomegaly

Work-up

- Hgb: **87** WBC: **0.8** PLT: 198
 - Neut: **0.5**, Lymph: 0, Mono: 0, Eo: 0
- CRP: 368
- VBG: 7.42/36/23, Lactate: **1.8**
- Lytes: Na: **130**, K: 3.6
- Mild increase in Liver enzymes
- Normal Renal function

Respiratory Intervention

- Oxygen applied, (3L) with initial improved saturation
 - WOB persisted despite BiPAP trial
- Ongoing tachypnea and WOB → intubated
 - FiO₂ = 1.0, Pressure of 32/10 to maintain oxygen saturation
 - Transitioned to HFO

Anti-infectives were broadened to Vancomycin, Meropenem,
 Azithromycin, TMP-SMX, and oseltamivir (Tamiflu)

ECLS Activation

- Our patient continued to deteriorate
 - Escalating inotropic/chronotropic agents
 - Ongoing difficulty with oxygenation and ventilation
 - ABG: 6.83/139/23

 After discussion with family, cannulated for ECLS and transferred to regional ECLS center

DDx of Rapidly Progressing Respiratory Failure?

- Given speed of deterioration:
 - Infectious etiology most likely
- Viral
 - Influenza
 - Entero/Rhinovirus
 - RSV
 - CMV
 - •

- Bacterial
 - S. pneumonia, S. aureas,
 Haemophilus, Morexella
 - Mycoplasma
 - PJP, Legionella

• Fungal less likely given rapid progression, but remains possible

Infectious Workup

• Enterovirus/Rhinovirus positive

- ETT suction:
 - No organisms, no growth on culture
 - Pneumocystis not seen

Bronchoscopy

- Day # 4 of ECLS
 - Galactomannan negative
 - Pneumocystis negative
 - Bacterial and Fungal Culture negative
 - No AFB seen
 - Adenovirus NAT <u>positive</u>

• Legionella pneumophila (serogroup 6)

Legionnaires Disease (Legionellosis)

Microbiology & Environment

- Legionella pneumphila is a Gram-negative coccobacilli
 - 58 species
 - Multiple serogroups
 - Serogroup 1 (Lp1):
 - Most common subtype (~80%)
 - Most virulent subtype

- Ubiquitous in aqueous environments
- Survives as intracellular parasites in environment

Pathogenesis

- Transmission:
 - Inhalation, aspiration, or direct contact
 - Increased risk with cumulative exposure
- Infection of host cells
 - Flagellum, pili, and surface proteins to enter cells
 - Inhibition of phagocyte bactericidal function
 - Growth and replication occurs within host cells
 - Disruption of host cell membrane → Legionella expulsion

Mandell et al. Clini Infect Dis. 2016 Cunha et al. Lancet, 2016 Stout et al. NEJM, 1997

Incidence

* Per 100,000 population.

The incidence of legionellosis decreased slightly from 2011 to 2012, but a general increasing trend in disease began in 2003. Factors contributing to this increase include a true increase in disease transmission, greater use of diagnostic testing, and increased reporting.

Cunha et al. Lancet, 2016 Redbook, 2015 Stout et al. NEJM,

1997

Risk Factors

- Cigarette smoking
- Chronic Lung disease
- Malignancy/chemotherapy
- Surgery
- Neonates/premature infants

- Immunosuppression
 - Chronic steroid treatment
 - TNF-a treatment
 - Post transplant patients at high risk

Neutropenia has NOT been identified as a risk factor

Clinical Manifestations

- Often resembles pneumococcal pneumonia and Community Acquired Pneumonia (CAP)
 - Wide spectrum in disease from mild symptoms to severe pneumonia

Asymptomatic

Pontiac Fever

ARDS

Symptoms

- Fever tends to occur in nearly <u>all</u> individuals (67-100%)
 - May not manifest with immunosuppression
- Symptoms
 - Cough (41-92%)
 - Chills (15-77%)
 - Dyspnea (36-56%)
 - Neurologic (38-53%)

- Myalgia/arthralgia (20-43%)
- Chest pain (14-50%)
- Gastrointestinal (9-47%)

Investigations

Radiographic:

- No consistent/pathognomonic for Legionella
 - Patchy, unilobular infiltrate is most common
- Pleural effusion (15-50%)
- Cavitation can occur (18%)
- Nodular opacities (8%)

Laboratory

- Hyponatremia
- Elevated inflammatory markers
- Leukocytosis/Leukopenia
- Elevated Creatine Kinase
- Myoglubinuria
- Watery sputum with few neutrophils

Non-culture Diagnosis

- Urinary Antigen
 - Fast
 - Specificity of 99%
 - Detects only Lp1 subgroup
 - Sensitivity 56-99%
 - Lower in immunocompromised patients
 - Ideal to combine with respiratory culture
- Immunofluorescence
 - Low sensitivity

Culture Diagnosis

- Gold standard
 - Detects all Legionella species and antibiotic susceptibilities
- Requires special culture media and environment for growth
 - Appropriate identification on requisition
- Samples should be obtained from suspected sites of infection

Who to test?

- ATS and IDSA Adult Guidelines:
 - Severe Community Acquired Pneumonia (CAP)
 - Failure of outpatient therapy
 - Recent Travel
 - Pleural Effusion
 - Known Legionella outbreak

Treatment

- B-lactams and aminoglycosides are ineffective
- First line:
 - Levofloxacin (Fluoroquinolone)
 - Azithromycin (Macrolide)
 - Doxycycline (Tetracycline)
- Extended course in high risk individuals
- Reporting to public health

Mortality

- Early identification and treatment initiation is key
- Overall pediatric mortality = 33%

- Increased mortality in:
 - < 1 year of age (50% vs 25%)</p>
 - Immunosuppressed (42% vs 15%)
 - Inappropriate therapy (76% vs 24%)

Back to our Case...

- Levofloxacin was added following identification of Legionella
- Hemodyamics improved, decanulated from ECLS on day 10
- Extubated to BiPAP on day 20
 - Quick transition to oxygen
 - On room air at time of discharge

Completed a 6 week course of Levofloxacin

Source Identification?

Public Health notified...

- Parents have a hot tub at home
 - Medical grade filters

Legionella identified from hot tub water

Questions?

References – Echinococcosis

- Parasites Echinococcosis. December 12, 2012. Accessed January 11, 2017. From CDC: https://www.cdc.gov/parasites/echinococcosis/biology.html
- Eckert J, Deplazes P. Biological Epidemiological, and Clinical Aspects of Echinococcosis, a Zoonosis of Increasing Concern. Clinical Microbiology Reviews. 2004;17(1):107-135
- Pedrosa I, Saiz A, Arrazola J, Ferreiros J, Pedrosa CS. Hydatid Disease: Radiologic and Pathologic Features and Complications. Radiographics. 2000;20:795-817
- Garg MK, Sharma M, Gulati A, Gorsi U, Aggarwal AN, Agarwal R, Khandelwal N. World J Radiol. 2016;8(6):581-587.
- Cakir, E., et al., Unusual Presentation of Hydatid Cyst-Diagnosis with Bronchoscopy. J Infect Dev Ctries, 2010. 4(5): p. 352-4.
- Köksal, D., et al., Bronchoscopic Diagnosis of Ruptured Pulmonary Hydatid Cyst Presenting As Nonresolving Pneumonia: Report of Two Patients. Lung, 2004. **182**(6): p. 363-368.
- Madan, K. and N. Singh, Bronchoscopic diagnosis of pulmonary hydatid cyst. Canadian Medical Association Journal, 2012. 184(2): p. E158.
- Yasar, Z., et al., Diagnosis of Pulmonary Hydatid Cyst by Bronchoscopy. J Bronchology Interv Pulmonol, 2015. 22(4): p. 343-6.
- Balikian, J.P. and F.F. Mudarris, *Hydatid disease of the lungs*. A roentgenologic study of 50 cases. American Journal of Roentgenology, Radium Therapy & Nuclear Medicine, 1974. **122**(4): p. 692-707.
- Craig, J.M. and A.L. Scott, Helminths in the lungs. Parasite Immunol, 2014. **36**(9): p. 463-74.
- Morar, R. and C. Feldman, Pulmonary echinococcosis. Eur Respir J, 2003. 21(6): p. 1069-77.
- Stocker, J.T., Cystic lung disease in infants and children. Fetal Pediatr Pathol, 2009. 28(4): p. 155-84.
- Mirza, A. and M.H. Rathore, Toxocariasis, Hydatid Disease of the Lung, Strongyloidiasis, and Pulmonary Paragonimiasis, in Kendig & Chernick's Disorders of the Respiratory Tract in Children (Eighth Edition), R.W. Wilmott, et al., Editors. 2012, W.B. Saunders: Philadelphia. p. 552-563.
- Higuita NIA, Brunetti E, McCloskey C. Cystic Echinococcosis. Journal of Clinical Microbiology. 2016.54(3):518--523

References – Legionnaires Disease

- Cunha, B.A., A. Burillo, and E. Bouza, Legionnaires' disease. The Lancet, 2016. 387(10016): p. 376-385.
- Greenberg, D., et al., Problem pathogens: paediatric legionellosis—implications for improved diagnosis. The Lancet Infectious Diseases, 2006. 6(8): p. 529-535.
- Mandell LA, Wunderink RG, Anzueto A, et al, and the Infectious Diseases Society of America, and the American Thoracic Society. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. *Clin Infect Dis* 2007; **44** (suppl 2): S27–72.
- Red Book, 30th Edition (2015). 2015 Report of the Committee on Infectious Diseases, 30th Edition, ed. D.W. Kimberlin, et al. 2015. 1064.
- Scola, B.L. and H. Maltezou, Legionella and Q fever community acquired pneumonia in children. Paediatr Respir Rev, 2004. **5 Suppl A**: p. \$171-7.
- Seltz, L.B., M. Colvin, and L.L. Barton, 32 Atypical Pneumonias in Children, in Kendig & Chernick's Disorders of the Respiratory Tract in Children (Eighth Edition), R.W. Wilmott, et al., Editors. 2012, W.B. Saunders: Philadelphia. p. 493-505.
- Wolf, J. and A.J. Daley, Microbiological aspects of bacterial lower respiratory tract illness in children: atypical pathogens. Paediatr Respir Rev, 2007. **8**(3): p. 212-9, quiz 219-20.