Somewhat short cases

Cross Canada Rounds
June 21, 2018
Connie Yang

CASE 1

Male toddler

- Pulmonary valve stenosis with only trivial gradient across the pulmonary valve, left ventricular outflow tract obstruction
- Suspicion of Noonan syndrome
- Presented with hypoxemia and increased work of breathing
- Chest x-ray showing a pleural effusion

Investigations

- Pleural fluid
 - Bloody in appearance
 - Bacterial, fungal, mycobacterial culture negative
 - Cell count: lymphocytes 98%, macrophages 2%
 - Lymphocytes not clonal, cytology negative
 - Glucose 4.2
 - Protein 42, LDH 1308 (blood protein 63, LDH 866)
 - Triglycerides 8.89mmol/L
- Pleural:Blood ratio Protein 0.67, LDH 1.5

Investigations

- Pleural fluid
 - Bloody in appearance
 - Bacterial, fungal, mycobacterial culture negative
 - Cell count: lymphocytes 98%, macrophages 2%
 - Lymphocytes not clonal, cytology negative
 - Glucose 4.2
 - Protein 42, LDH 1308 (blood protein 63, LDH 866)
 - Triglycerides 8.89mmol/L

OVER 1.24mmol/L

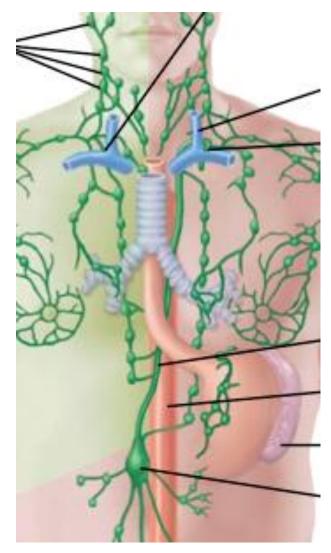
Pleural:Blood ratio Protein 0.67, LDH 1.5

- CHYLOTHORAX
- NON-BACTERIAL INFECTION (TB)
- MALIGNANCY
- CONNECTIVE TISSUE DISEASE

EXUDATE

- protein ratio>0.5
- -LDH ratio> 0.6
- LDH >2/3 serum

CHYLOHEMOTHORAX

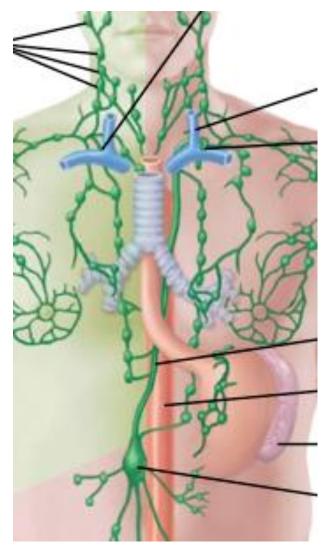

What is your differential diagnosis for a chylous effusion?

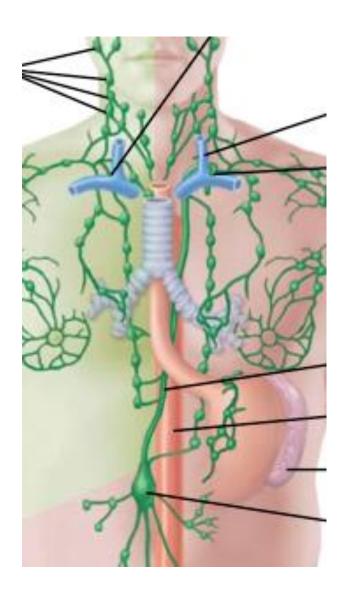
DDx: Chylothorax in Children

1 Thoracic Duct

High venous pressure

Congenital / Primary lymphatic

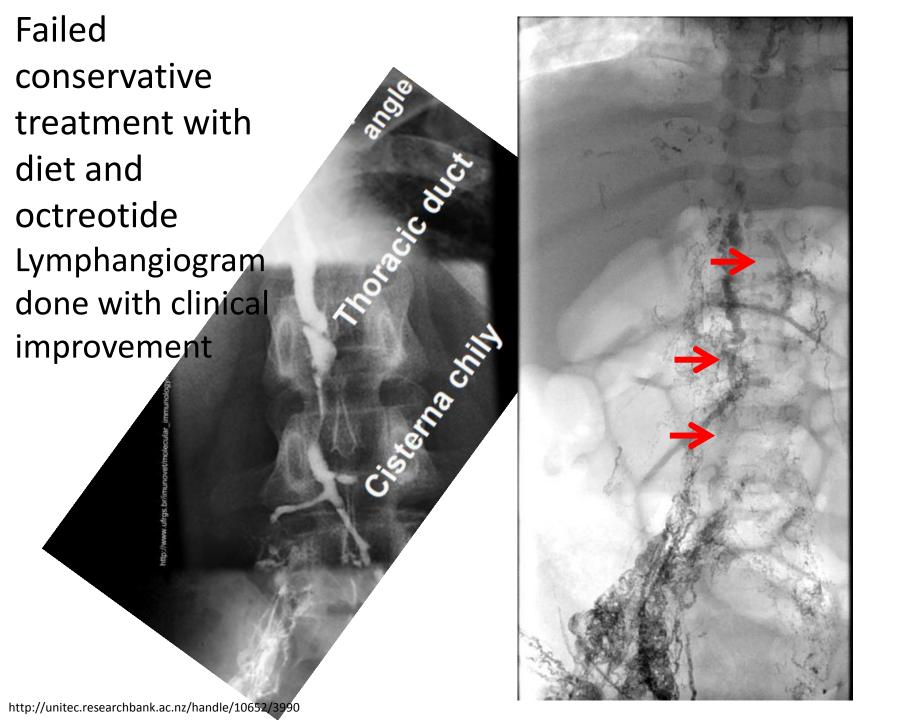



DDx: Chylothorax in Children

1

Thoracic Duct damage, compression, erosion

- Post-operative
- Trauma
- Malignancy
 - Neurogenic
 - Lymphoma
 - Teratoma
 - Wilms
 - Sarcoma
- Nodes
 - TB (can also get pleural fibrosis)


High venous pressure

- SVC thrombus
- Post-Fontan

3

Congenital / Primary lymphatic

- Primary Lymphangiectasia
- Atresia/absence of thoracic duct
- Lymphatic Malformations
 - Common (Lymphangiomas)
 - Generalized lymphatic anomaly (Lymphangiomatosis)
- Syndromes (T21, XO, Noonan)

- Represented 6 months later with recurrent chylohemothorax and again failed conservative management with diet and octreotide
- The evening following his second lymphangiogram he had worsening work of breathing and hypoxemia with an x-ray showing diffuse bilateral infiltrates

Differential diagnosis?

- Water
 - pulmonary edema (post-obstructive pulmonary edema, pulmonary embolus with pulmonary edema, ARDS)
- Blood
 - diffuse alveolar hemorrhage due to reaction to lipiodol
- Pus
 - pneumonia
- CBC showing Hb 76 (previously 111), WBC 16.1, Plt 362
- CRP <5, INR/PTT normal

- Increasing hypoxemia requiring intubation
- Bronchoscopy confirmed blood in airways and on lavage
- Treated with methylprednisolone 4mg/kg/day
- Eventually extubated and weaned to room air with removal of chest tubes and discharged on a one month wean of prednisone

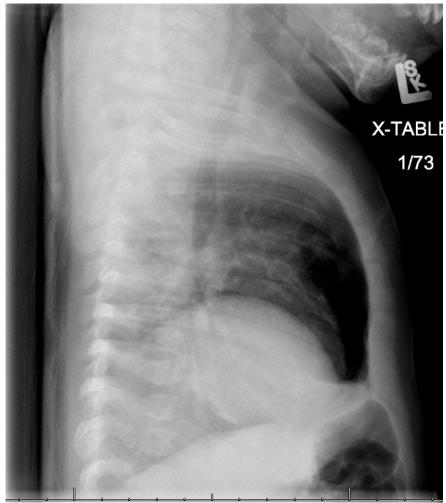
Risks of lymphangiogram

- Pulmonary hemorrhage
 - First reported in 1995 following bipedal lymphography in a 50 year old with Hodgkin's lymphoma
 - Presented 4 days after procedure with fever, cough and increasing dyspnea, alveolar hemorrhage confirmed on BAL, self-resolved in 2 days
- Extravasation of lipiodol into soft tissue
- Pulmonary embolism

Take home messages

- Lymphangiectasia in Noonan's syndrome can present with later onset chylothorax
- Lymphangiogram seems to be useful in the treatment of chylothorax secondary to lymphangiectasia
- Pulmonary hemorrhage is a rare but life threatening complication of lymphangiogram

CASE 2: AN INTERESTING X-RAY


6 month old boy

- Ex 36+5 week infant, uncomplicated pregnancy and delivery
- Well until admitted at 5 months of age with RSV+ bronchiolitis for total of 6 days
- Respirology consulted during his second admission at 6 months of age because of his chest x-ray

Clinical Presentation

- Increased work of breathing, wheezing, saturations in the mid-80s on room air
- Admitted to the PICU for bipap due to his increased work of breathing and hypoxemia
- Treated with Ventolin (no change in work of breathing), broad spectrum antibiotics, 1 dose of dexamethasone
- Positive for human metapneumonvirus and strep.pneumo on PCR

Differential diagnosis

Right upper lobe collapse

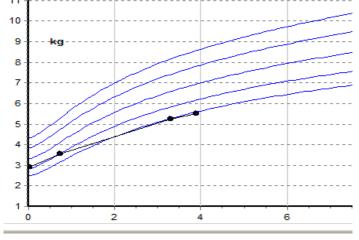
AND

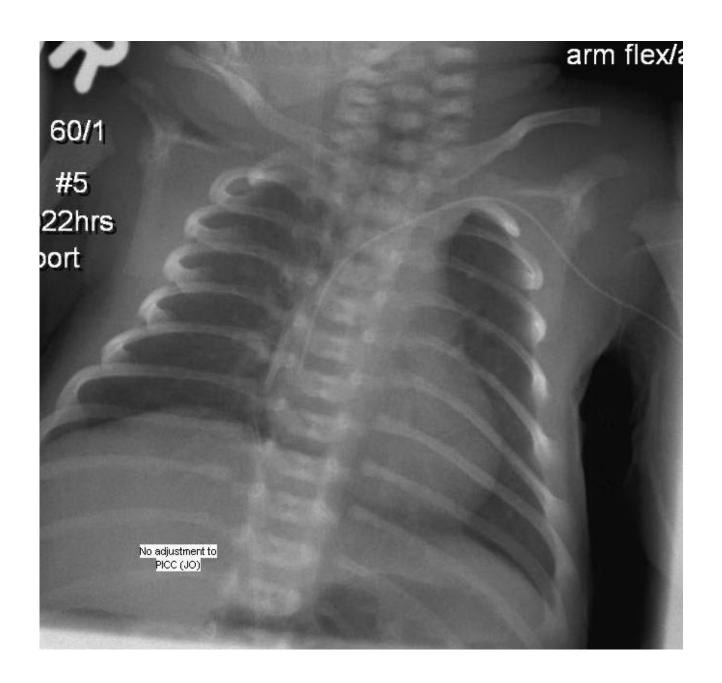
- Right diaphragm eventration
- Right diaphragm paralysis
- Right lung hypoplasia

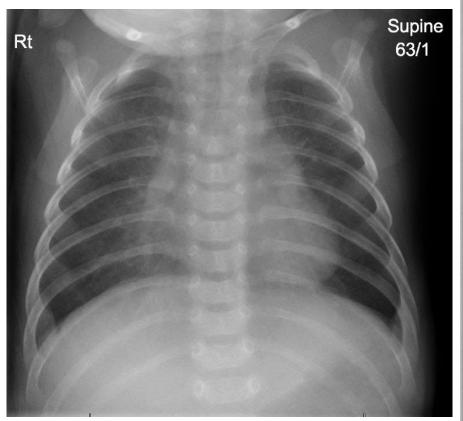
- Clinically improved and on room air with no work of breathing 6 days after admission, although chest x-ray remained the same
- Fluoroscopy showed no paradoxical movement with some movement of the diaphragm, consistent with diaphragmatic eventration

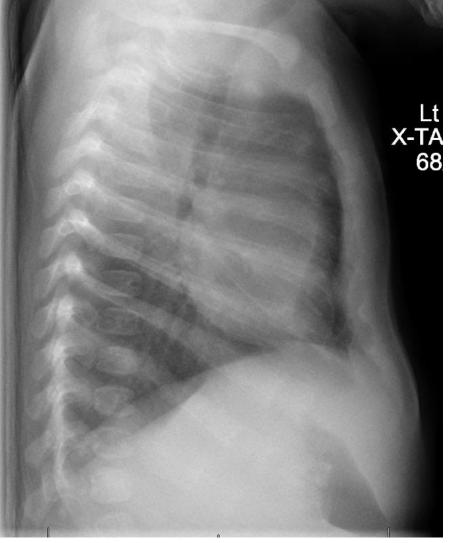
CASE 3: FIFTY SHADES OF GREY

- 16 month old with chronic tachypnea
- Born at 39+4 days after uneventful pregnancy
 - GBS negative, ROM x 26 hours with maternal fever
 - APGAR 4¹,6⁵ 9¹⁰, BW 2940gm
 - Full septic workup negative
 - LP had blood, head ultrasound and MRI were done which showed multiple punctate parenchymal hemorrhages suggestive of intraventricular hemorrhage, treated for possible HSV encephalitis
- CPAP for <12 hours but otherwise well
- Noted to have significant pectus excavatum but not tachypneic and had good saturations at discharge


Initial presentation


 At 3 months of age, presented with a 2 week history of increased work of breathing and poor weight gain with history of poor feeding and reflux


 Saturation 98% on room air in the day but overnight oximetry showed baseline saturation of 94% with intermittent desaturations to the


high 80s

• Gas 7.39/33/22

chILD Syndrome

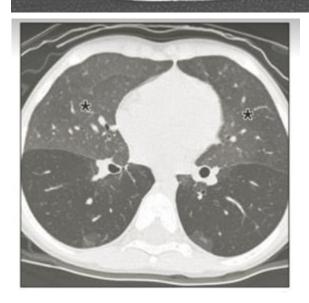
Common causes of diffuse lung disease excluded **AND**

Three of the following:

- 1) Respiratory symptoms
- 2) Respiratory signs (including FTT)
- 3) Hypoxemia
- 4) Diffuse abnormalities on CXR or CT

Assess for common causes of DLD

☐ Infection (CRP 12, negative viral respiratory panel including ureaplasma, chlamydia trachomatis) ☐ Cardiac (trivial PFO, unable to estimate RVSP, pulmonary veins visualized and normal) ☐ Cystic fibrosis (sweat Cl=10mmol/L, fecal elastase 420) ☐ Primary Ciliary Dyskinesia (normal ciliary motility) ☐ Immunodeficiency (WBC 20.6, neutrophils 3.65, lymphocytes 14.93, flow cytometry normal, HIV negative, IgG 2.9, IgA 0.11, IgM 0.55, positive titres for diphtheria and tetanus) ■ Aspiration (normal upper GI, feeding study)


☐ Alveolar Hemorrhage Syndrome (Hb 116)

☐ Metabolic workup negative

Inspiratory

Expiratory

- Sensitivity 78%
- Specificity 100%

Bronchoscopy

- Normal anatomy
- Cell count: Macrophages 40%, lymphocytes 51%, neutrophils 9%
- Bacterial, fungal, atypical mycobacterial cultures negative
- Respiratory viral panel negative
- No hemosiderin/lipid laden macrophages

DDx for lymphocytic BAL fluid

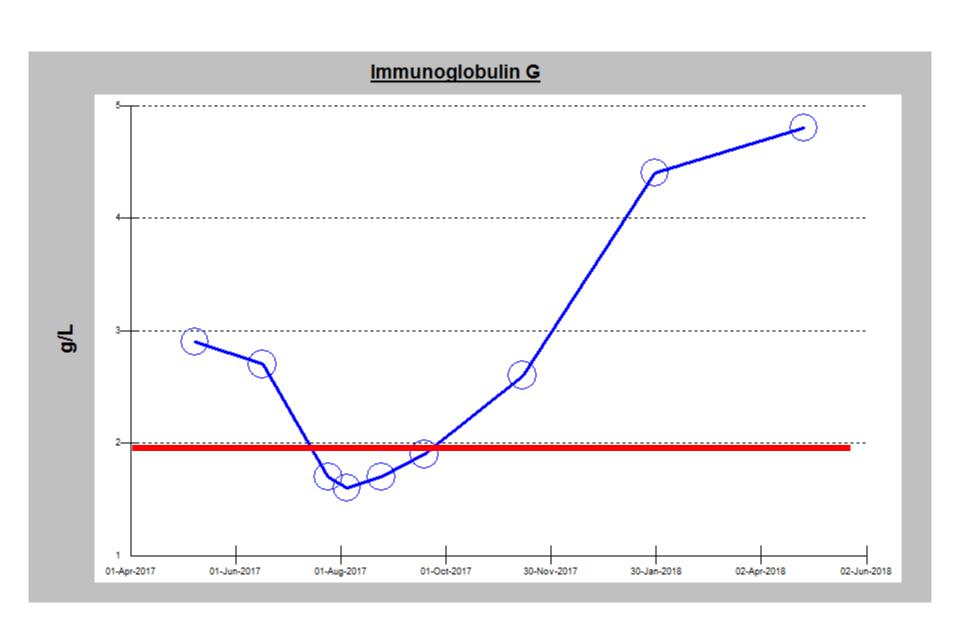
- Viral infection
- Sarcoidosis
- Pulmonary histiocytosis
- Hypersensitivity pneumonitis
- Drug-induced lung disease
- Collagen vascular disease
- Lymphocytic interstitial pneumonia
- Cryptogenic organizing pneumonia
- Lymphoma

- PJP stains negative, PJP PCR positive
- CMV PCR positive (serum viral load 0)

Immunodeficiency!

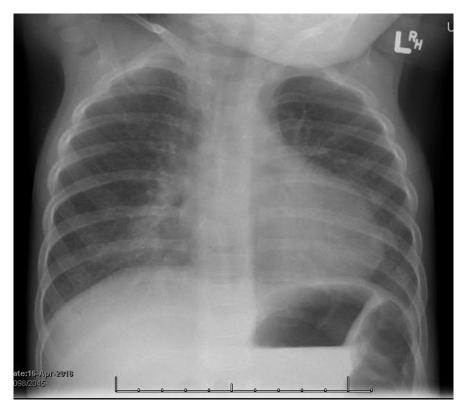
- Flow cytometry, oxidative burst, CH50, CD40 ligand testing normal
- In vitro mitogen stimulation testing normal
- Whole exome sequencing normal, deletion/duplication testing normal
- Treated with gancyclovir and septra with possible improvement in tachypnea then worsening coinciding with discontinuation of valgancyclovir prophylaxis 2 months later

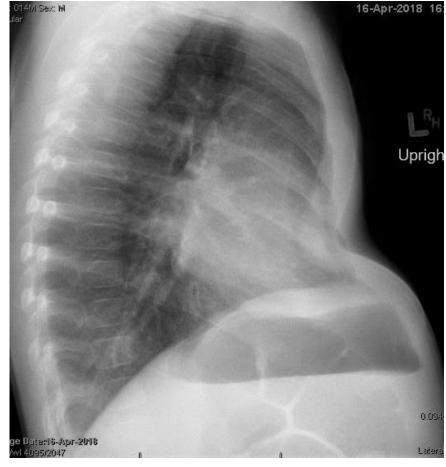
Repeat bronchoscopy

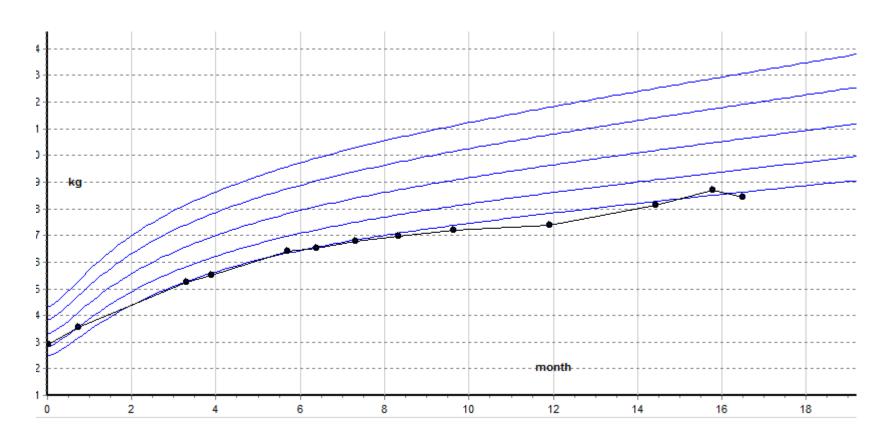

- Cell count: Macrophages 87%, Lymphocytes 10%, Neutrophils 3%
- Cultures negative
- CMV PCR positive (Serum viral load 0, cycle count 34)
- PJP stains and PCR negative

PJP colonization?

PJP detected in 9.4 to 100% of infants who were immunocompetent


Study	Subjects, no.	Diagnostic sample	Diagnostic method	Population	Colonized with Pneumocystis, %
Vargas et al. 1999 [11]	695	Autopsy lung	IHC stain	IC infants dying of SIDS and other causes	9.4
Vargas et al. 2001 [9]	74	NPA	Nested PCR	IC with respiratory infection	32.0
Morgan et al. 2001 [1]	79	Autopsy lung	IHC stain	Infants dying of SIDS	13.9
Nevez et al. 2001 [12]	178	NPA	Nested PCR	IC with bronchiolitis	24.3
Kasolo et al. 2002 [13]	75	Autopsy lung	PCR	Children with and without HIV and dying of non-PCP respiratory illness	17.3
Totet et al. 2003 [14]	240	NPA	Nested and real-time PCR	IC with bronchiolitis	24.6
Beard et al. 2005 [15]	58	Autopsy lung (4 samples)	Nested PCR	IC infants dying of various causes	100.0
Vargas et al. 2005 [16]	112	Autopsy lung (1 sample), tracheal aspirate	Nested PCR	IC infants dying in community/hospital	44.6
Vargas et al. 2007 [17]	130	Autopsy lung	GMS stain	IC infants dying in the community	32.3
Larsen et al. 2007 [18]	422	NPA	Real-time PCR	IC infants hospitalized with acute respiratory infection	15.9


NOTE. GMS, Gomori methenamine sliver; IC, immunocompetent; IHC, immunohistochemical; NPA, nasopharyngeal aspirate; PCR, polymerase chain reaction; SIDS, sudden infant death syndrome.

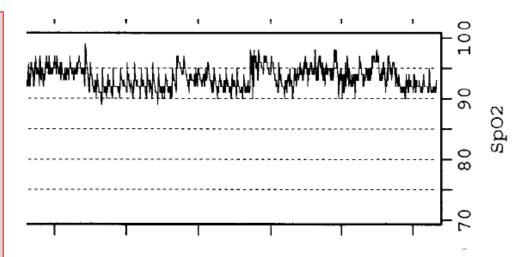

Current status

Imaging unchanged

- Growth tracking along the 3rd %ile except for recent dip with teething
- Mild gross motor delay

Overnight Oximetry

- Mean saturation 91.3-92.2% (June 2017: 95.4%)
- Time with SpO2 <90% is 1.9-8.3% (June 2017: 3.4%)</p>

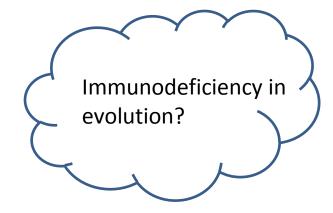

Normal in children >1 year old:

Median baseline saturation 98% with a 5%ile of 96-97%

Healthy child 5-11yo: no more than 5% time with saturation below 94% while sleeping

Healthy infant <1 year old:

Only 5% of infants have saturation <90% for >4% of the time



 Clinically same: tachypneic RR~60, intercostal indrawing, pectus

Picture removed

ILD more common in infancy

- 1) Diffuse developmental disorder
- 2) Surfactant dysfunction mutation
 - Surfactant protein C
 - ABCA3
 - Brain lung thyroid syndrome (NKX2.1)
 - GMCSF abnormalities (CSF2RA/B)
- 3) Growth abnormalities
- 4) Pulmonary interstitial glycogenosis (PIG)
- 5) Neuroendocrine Cell Hyperplasia (TTF1/NKX2.1 mutation)

What would you do next?

- 1) Repeat CT scan +/- bronchoscopy
- 2) Lung biopsy
- 3) Watchful waiting
- 4) Trial of steroids
- 5) Refer somewhere for lung function testing
- 6) Something else

Take home messages

Systematic approach to children with chronic respiratory symptoms is useful

Evolution over time directs management

 Personalized medicine is about applying algorithms to your specific patient