Improving Care in COPD: Rehabilitation

Dina Brooks, PhD, MSc, BSc (PT)
Professor
School of Rehabilitation Science, McMaster University, Hamilton, Ontario
Senior Scientist,
West Park Healthcare Centre, Toronto, Ontario
Disclosure of Conflict of Interest

- I have no conflict to declare
Outline: Cochrane Reviews (in last 4-5 years)

- Pulmonary Rehabilitation
- Self-Management
- Adjuncts to PR
Pulmonary Rehabilitation Systematic Reviews

1. Pulmonary rehabilitation for COPD

2. Pulmonary rehabilitation following acute exacerbation in COPD
Systematic Review- Pulmonary Rehabilitation in COPD

Pulmonary rehabilitation for chronic obstructive pulmonary disease (Review)

McCarthy B, Casey D, Devane D, Murphy K, Murphy E, Lacasse Y 2015

Objective:
- Determine the effects of pulmonary rehab vs. usual care on COPD patients
- Assessing
 - HRQoL
 - Exercise Capacity

Characteristics of Studies:
- Randomized controlled trials
- Number of participants: 12-350
Systematic Review - Pulmonary Rehabilitation in COPD

Outcome: Change in CRQ, Dyspnoea

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Pulmonary rehab</th>
<th>Usual care</th>
<th>Mean Difference</th>
<th>Weight</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean(SD)</td>
<td>N</td>
<td>Mean(SD)</td>
<td>IV(Random, 95% CI)</td>
</tr>
<tr>
<td>Cambach 1997</td>
<td>14</td>
<td>1.2 (1.2)</td>
<td>8</td>
<td>0 (0.8)</td>
<td>13.5 %</td>
</tr>
<tr>
<td>Goldstein 1994</td>
<td>40</td>
<td>0.68 (1.14)</td>
<td>39</td>
<td>0.02 (1.3)</td>
<td>24.7 %</td>
</tr>
<tr>
<td>Griffiths 2000</td>
<td>93</td>
<td>1 (1.28)</td>
<td>91</td>
<td>-0.18 (1)</td>
<td>39.2 %</td>
</tr>
<tr>
<td>McNamara 2013</td>
<td>30</td>
<td>2.15 (3.7793)</td>
<td>15</td>
<td>0 (1.81)</td>
<td>4.2 %</td>
</tr>
<tr>
<td>O’Shea 2007</td>
<td>27</td>
<td>0.6 (1.5)</td>
<td>27</td>
<td>0 (1)</td>
<td>18.4 %</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>204</td>
<td>180</td>
<td></td>
<td>100.0 %</td>
<td>0.99 [0.64, 1.34]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.05; Chi² = 6.09, df = 4 (P = 0.19); I² = 34%
Test for overall effect: Z = 5.55 (P < 0.00001)
Test for subgroup differences: Not applicable
Systematic Review- Pulmonary Rehabilitation in COPD

Outcome: Change in CRQ-Dyspnoea

Subgroup Analysis: Community-based vs. Hospital-based PR

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Pulmonary rehab</th>
<th>Usual care</th>
<th>Mean Difference</th>
<th>Weight</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean(SD)</td>
<td>N</td>
<td>Mean(SD)</td>
<td>IV,Random,95% CI</td>
</tr>
<tr>
<td>1 QoL - Community Based CRQ (Dyspnoea)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>342</td>
<td>291</td>
<td>45.7 %</td>
<td>0.58 [0.34, 0.81]</td>
<td></td>
</tr>
<tr>
<td>2 QoL - Hospital Based CRQ (Dyspnoea)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>353</td>
<td>297</td>
<td>54.3 %</td>
<td>0.99 [0.66, 1.32]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>695</td>
<td>588</td>
<td>100.0 %</td>
<td>0.82 [0.59, 1.05]</td>
<td></td>
</tr>
</tbody>
</table>
Systematic Review- Pulmonary Rehabilitation in COPD

Conclusions:

• Pulmonary rehabilitation relieves dyspnoea and fatigue, improves emotional function and enhances the sense of control that individuals have over their condition.

• Sub-group analysis showed more improvement in CRQ domains in hospital-based vs. community-based PR
Objective:
• Determining effects of PR after acute exacerbations in COPD
• Assessing
 ○ Hospital readmissions
 ○ HRQoL
 ○ Exercise capacity
 ○ Mortality

Characteristics of studies:
• Randomized controlled trials
• Number of participants: 26-389
• Rehabilitation vs. usual care
Systematic Review—Pulmonary Rehabilitation in AECOPD

Outcome: Hospital Readmission

Figure 3. Forest plot of comparison: I Rehabilitation versus control, outcome: 1.1 Hospital readmission (to end of follow-up).

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Pulmonary rehab</th>
<th>Control</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events Total</td>
<td>Events Total</td>
<td>Weight</td>
<td>M-H, Random, 95% CI</td>
</tr>
<tr>
<td>Behnke 2000</td>
<td>3 14</td>
<td>9 12</td>
<td>8.8%</td>
<td>0.09 [0.01, 0.56]</td>
</tr>
<tr>
<td>Eaton 2009</td>
<td>11 47</td>
<td>15 50</td>
<td>14.8%</td>
<td>0.71 [0.29, 1.77]</td>
</tr>
<tr>
<td>Greening 2014</td>
<td>108 169</td>
<td>84 151</td>
<td>17.8%</td>
<td>1.41 [0.90, 2.21]</td>
</tr>
<tr>
<td>Ko 2011</td>
<td>16 30</td>
<td>13 30</td>
<td>14.0%</td>
<td>1.49 [0.54, 4.14]</td>
</tr>
<tr>
<td>Ko 2016</td>
<td>44 90</td>
<td>63 90</td>
<td>16.8%</td>
<td>0.41 [0.22, 0.76]</td>
</tr>
<tr>
<td>Man 2004</td>
<td>2 20</td>
<td>12 21</td>
<td>9.5%</td>
<td>0.08 [0.02, 0.45]</td>
</tr>
<tr>
<td>Murphy 2005</td>
<td>2 13</td>
<td>5 13</td>
<td>8.5%</td>
<td>0.29 [0.04, 1.90]</td>
</tr>
<tr>
<td>Seymour 2010</td>
<td>2 30</td>
<td>10 30</td>
<td>9.9%</td>
<td>0.14 [0.03, 0.72]</td>
</tr>
</tbody>
</table>

Total (95% CI): 413 / 397 100.0% 0.44 [0.21, 0.91] 0.0002

Total events: 188 / 211

Heterogeneity: Tau² = 0.74; Chi² = 29.80, df = 7 (P = 0.0001); I² = 77%

Test for overall effect: Z = 2.20 (P = 0.03)

Risk of bias legend
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding (performance bias and detection bias): Hospital admission
(D) Incomplete outcome data (attrition bias)
(E) Selective reporting (reporting bias)
(F) Other bias
Systematic Review– Pulmonary Rehabilitation in AECOPD

Conclusion:
• Evidence shows that PR is effective for patients with AECOPD
 ○ Improves HRQoL and exercise capacity (high quality evidence)
 ○ Reduced hospital readmissions (moderate quality, high heterogeneity)
 ○ No effect on mortality (low quality, high heterogeneity)
Self-Management Systematic Reviews

1. Self management for patients with COPD

2. Computer and mobile technology interventions for self-management in COPD

3. Self-management interventions including action plans for exacerbations versus usual care in patients with COPD
Objective:
• To examine whether self-management interventions lead to improved health outcomes and reduce healthcare utilization.

Characteristics of Studies:
• A combination of RCTs and non-randomized controlled trials
• Number of participants: 14-659
• Intervention methods varied
 o Individual sessions
 o Group Sessions
 o Phone Sessions
 o Lifestyle goals, etc.
• Intervention duration varied
 o Longest trial duration was 24 months
Systematic Review – Self-Management in COPD

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Self-management N</th>
<th>Control N</th>
<th>Mean Difference (SE)</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourbeau 2003</td>
<td>61</td>
<td>76</td>
<td>-2 (-1.9826)</td>
<td>12.5%</td>
<td>-2.00 [-5.00, 1.00]</td>
</tr>
<tr>
<td>Coulis 2005a</td>
<td>49</td>
<td>26</td>
<td>-2.9 (3.5205)</td>
<td>4.4%</td>
<td>-2.90 [-9.50, 4.00]</td>
</tr>
<tr>
<td>Coulis 2005b</td>
<td>61</td>
<td>26</td>
<td>-2.9 (3.3877)</td>
<td>4.2%</td>
<td>-2.90 [-3.85, 4.45]</td>
</tr>
<tr>
<td>Khour 2009</td>
<td>71</td>
<td>72</td>
<td>-2.9 (2.9056)</td>
<td>5.5%</td>
<td>-2.90 [-7.62, 2.02]</td>
</tr>
<tr>
<td>Kuff 2009</td>
<td>19</td>
<td>19</td>
<td>-9.7 (4.4275)</td>
<td>2.5%</td>
<td>-9.70 [-18.38, -1.02]</td>
</tr>
<tr>
<td>Manninenkot 2003</td>
<td>122</td>
<td>113</td>
<td>-0.6 (1.1225)</td>
<td>30.7%</td>
<td>-0.60 [-2.80, 1.60]</td>
</tr>
<tr>
<td>Nino 2011</td>
<td>20</td>
<td>16</td>
<td>-2.9 (4.6724)</td>
<td>2.5%</td>
<td>-2.90 [-12.45, 5.05]</td>
</tr>
<tr>
<td>Rie 2010</td>
<td>233</td>
<td>204</td>
<td>-5.1 (1.28)</td>
<td>25.5%</td>
<td>-5.10 [-7.61, -2.59]</td>
</tr>
<tr>
<td>Watanayashi 2011</td>
<td>52</td>
<td>50</td>
<td>-0.8 (2.07)</td>
<td>8.1%</td>
<td>-0.80 [-8.82, 5.32]</td>
</tr>
</tbody>
</table>

Total (95% CI): 719 [645, 791]
Heterogeneity: Test: $\chi^2 = 30.05, df = 9, P = 0.001$; I² = 50%
Test for overall effect: Z = 3.34 (P = 0.0003)
Test for subgroup differences: Not applicable

Favours self-management
Favours control

McMaster University
UNIVERSITY OF TORONTO
West Park Healthcare Centre
get your life back
Systematic Review– Self-Management in COPD

Conclusions:

- Improves HRQoL (SGRQ)
- Reduces respiratory-related (OR=0.57) and all cause hospitalizations (OR=0.60)
- Improves dyspnoea (mMRC)
- No effect on mortality or exercise capacity (6MWD)
Objective:

• To compare the effectiveness between digital interventions vs. a more personal approach involving direct in-person interventions/printed information

• Studies focused on increasing
 ○ health benefits
 ○ self-management of COPD

Characteristics of Studies:

• 3 RCTS
• Performed in homes of participants
• Participants: 30-1325
• Interventions were done using a variety of different methods
 ○ Pedometers
 ○ Apps
 ○ Websites
• Each study tracked activity levels and health benefits
Systematic Review – Self-Management - role of technology

Outcome: Health related quality of life (CCQ and SGRQ) up to six months.
Systematic Review – Self-Management - role of technology

Conclusions:
• Studies showed that technological interventions are more effective in improving
 o HRQoL (n=3)
 o Number of daily steps taken by patients (n=2)

• This is true after four weeks, four months and six months but not 12 months
Systematic Review—Self-Management in AECOPD

Objectives:
• Compare self-management action plans post-AECOPD with usual care
• Determine impact on:
 • HRQoL, respiratory-related hospital admissions

Characteristics of Studies:
• 22 RCTs were reviewed
• 12-659 participants completed the studies in this review
• Intervention methods varied
 o Group Sessions
 o Phone sessions
 o “Living with COPD” educational booklets
• severity varied and was based on different grading systems

Self-management interventions including action plans for exacerbations versus usual care in patients with chronic obstructive pulmonary disease (Review)

2017
Systematic Review – Self-Management in AECOPD

Outcome: HRQoL: adjusted SGRQ total score after 12 months of follow-up
Systematic Review—Self-Management in AECOPD

Conclusions:

• SM (with action plan) are associated with improvements in HRQoL and lower probability of respiratory-related hospital admissions.

• No excess all-cause mortality risk was observed BUT
 • a small, but significantly higher respiratory-related mortality rate for self-management compared to usual care.
Adjuncts to Exercise Systematic Reviews

1. Upper Limb Exercise Training for chronic obstructive pulmonary disease

2. Active mind-body movement therapies as an adjunct to or in comparison with pulmonary rehabilitation for people with COPD
Systematic Review– Upper Limb Training

Upper limb exercise training for COPD (Review)

McKeough ZJ, Velloso M, Lima VP, Alison JA
2016

Objective:
- Determining the effects of upper limb training on dyspnoea symptoms and HRQoL

Characteristics of Studies:
- 15 RCTS with duration ≥ 4 weeks
- Number of participants: 14-43
- Compared:
 - UL vs. no training or sham
 - Combined UL and LL vs. LL alone
Systematic Review – Upper Limb Training

Outcome: Dyspnea

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Upper Limb Training</th>
<th>Control</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>1.1.1 Endurance Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holland 2004</td>
<td>4.724</td>
<td>1.366</td>
<td>22</td>
<td>4.078</td>
</tr>
<tr>
<td>Subin 2010</td>
<td>3.62</td>
<td>0.8</td>
<td>9</td>
<td>3.6</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>31</td>
<td>24</td>
<td>41.3%</td>
<td>0.41 [-0.13, 0.95]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.59, df = 1 (P = 0.44); I^2 = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.49 (P = 0.14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.2 Resistance Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cowey 2012 (1)</td>
<td>4.6</td>
<td>1.2</td>
<td>22</td>
<td>4.2</td>
</tr>
<tr>
<td>Janaudia Ferreira 2011</td>
<td>5.3</td>
<td>0.9</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>35</td>
<td>39</td>
<td>58.7%</td>
<td>0.34 [-0.11, 0.80]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.05, df = 1 (P = 0.83); I^2 = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.49 (P = 0.14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>66</td>
<td>63</td>
<td>100.0%</td>
<td>0.37 [0.02, 0.72]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.67, df = 3 (P = 0.88); I^2 = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 2.10 (P = 0.04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences: Chi^2 = 0.04, df = 1 (P = 0.85), I^2 = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes

(1) Numbers in the Upper Limb Training Group reflect the participants from the upper body resistance training and health education group in this paper.
Conclusions:

- Some form of upper limb exercise training when compared to no upper limb training or a sham intervention improves dyspnoea but not HRQoL in people with COPD.

- Optimal upper limb training programme for people with COPD unknown.
Active mind-body movement therapies as an adjunct to or in comparison with pulmonary rehabilitation for people with chronic obstructive pulmonary disease (Review)

Gendron LM, Nyberg A, Saey D, Maltais F, Lacasse Y 2018

Objective:
• Comparing the effects of AMBMT to PR
 • Controlled breathing or focused meditation with active movement of joints/muscles
 • including but not limited to yoga, tai chi, and qigong

Characteristics of Studies:
• RCTs
• Participants: adults diagnosed with COPD
• Included in meta-analysis (n=10)
• Two intervention types:
 ○ Comparing AMBMT to PR
 ○ Comparing AMBMT + PR to PR
• Number of participants: 40-206
Systematic Review – AMBMT

Outcome: SGRQ Note: “PR” mainly consisted of unsupervised walking programs

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>AMBMT Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chan 2010</td>
<td>-0.92</td>
<td>15.18</td>
<td>70</td>
<td>3.42</td>
<td>16.1</td>
<td>69</td>
<td>31.4%</td>
<td>-4.34 [-9.54, 0.96]</td>
<td></td>
</tr>
<tr>
<td>Du 2013</td>
<td>-11.26</td>
<td>9.02</td>
<td>36</td>
<td>-4.85</td>
<td>7.42</td>
<td>38</td>
<td>59.7%</td>
<td>-6.47 [-10.18, -2.64]</td>
<td></td>
</tr>
<tr>
<td>Yang 2009</td>
<td>-11.61</td>
<td>12.1</td>
<td>19</td>
<td>-4.34</td>
<td>17.5</td>
<td>18</td>
<td>8.9%</td>
<td>-7.27 [17.10, 2.56]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>124</td>
<td></td>
<td></td>
<td>125</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>-5.93 [-8.75, -2.92]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.49, df = 2 (P = 0.78); I^2 = 0%
Test for overall effect: Z = 3.92 (P < 0.0001)

1.1.2 Activity

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>AMBMT Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chan 2010</td>
<td>-1.62</td>
<td>19.5</td>
<td>70</td>
<td>6.48</td>
<td>22.11</td>
<td>69</td>
<td>34.5%</td>
<td>-8.10 [-15.03, -1.17]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>106</td>
<td></td>
<td></td>
<td>107</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>-8.96 [-13.04, -4.89]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.09, df = 1 (P = 0.76); I^2 = 0%
Test for overall effect: Z = 4.31 (P < 0.0001)

1.1.3 Impact

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>AMBMT Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chan 2010</td>
<td>0.3</td>
<td>17.34</td>
<td>70</td>
<td>3.12</td>
<td>17.05</td>
<td>69</td>
<td>26.7%</td>
<td>-2.82 [-0.67, 3.03]</td>
<td></td>
</tr>
<tr>
<td>Du 2013</td>
<td>-8.1</td>
<td>8.6</td>
<td>36</td>
<td>-4.01</td>
<td>6.74</td>
<td>38</td>
<td>73.3%</td>
<td>-4.09 [-7.62, -0.56]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>106</td>
<td></td>
<td></td>
<td>107</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>-3.75 [-6.78, -0.73]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.13, df = 1 (P = 0.72); I^2 = 0%
Test for overall effect: Z = 2.43 (P = 0.02)

1.1.4 Symptoms

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>AMBMT Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chan 2010</td>
<td>-3.57</td>
<td>19.03</td>
<td>70</td>
<td>-1.2</td>
<td>10.17</td>
<td>69</td>
<td>31.0%</td>
<td>-2.37 [-5.55, 3.81]</td>
<td></td>
</tr>
<tr>
<td>Du 2013</td>
<td>-14.08</td>
<td>8.36</td>
<td>36</td>
<td>-12.54</td>
<td>9.82</td>
<td>38</td>
<td>69.0%</td>
<td>-2.15 [-6.30, 2.00]</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>106</td>
<td></td>
<td></td>
<td>107</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>-2.22 [-5.66, 1.23]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.00, df = 1 (P = 0.95); I^2 = 0%
Test for overall effect: Z = 1.28 (P = 0.21)
Systematic Review – AMBMT

Conclusions:
• The effects of AMBMT versus PR or of AMBMT added to PR versus PR alone in people with stable COPD remain inconclusive.
• Evidence of moderate quality shows that AMBMT added to PR does not result in improved disease-specific QoL
Conclusions

● There are a number of interventions for COPD in the context of PR

● PR is effective and necessary in stable COPD and post-AECOPD
 ○ Future research should focus on ideal length, setting and essential components of PR

● Self-management strategies improve HRQoL and dyspnea, reduce hospitalizations
 ○ Technology may be of benefit, need for transparency in intervention techniques
Conclusions

- Upper limb training improves dyspnea & upper limb endurance but does not impact HRQoL

- Alternative forms of exercise include active mind-body movement therapies (yoga, Qigong or Tai Chi)
 - Evidence for AMBMT is of low quality and lacks a proper control group
Thank you

- Respiratory Rehabilitation Team at West Park
- Razanne Habash and Stacey Butler