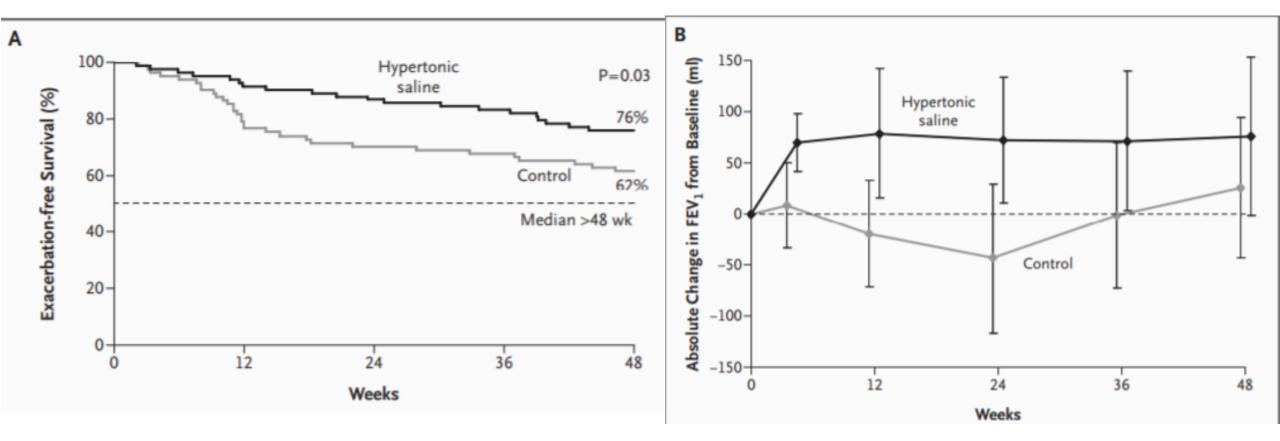

Preventive Inhalation of Hypertonic Saline in Infants with Cystic Fibrosis (PRESIS): A Randomized, Double-Blind, Controlled Study

Marie-Pier Dumas
PGY-4, McGill University


Outline

- Introduction: Evidence on inhaled hypertonic saline use
- Preventive Inhalation of Hypertonic Saline in Infants with Cystic Fibrosis (PRESIS): A Randomized, Double-Blind, Controlled Study
- Critical appraisal
- Interactive discussion and comments

Inhaled Hypertonic Saline

Introduction- Hypertonic saline

(Elkins et al., *NEJM*, 2006)

- Age: 6 +
- Intervention: Hypertonic vs Isotonic saline X 48 weeks
- Outcomes: Reduces pulmonary exacerbations and improves FEV1

Infant CF guidelines

Chronic Pulmonary Therapies

Recommendations

Evaluation of the Evidence

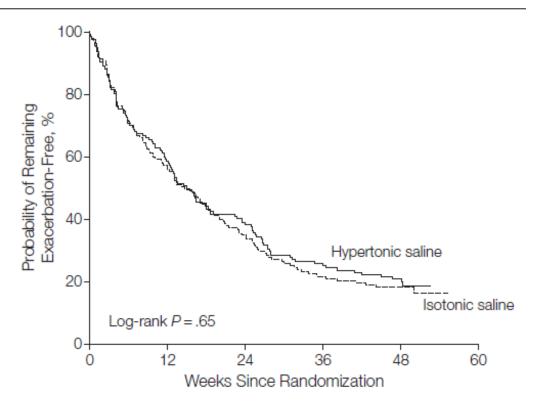
39. For infants with CF under 2 years of age, dornase alfa (recombinant human DNase) may be used in symptomatic infants.

Certainty: Low

Benefit: Moderate

Consensus recommendation

40. For infants with CF under 2 years of age, 7 percent hypertonic saline may be used in symptomatic infants.

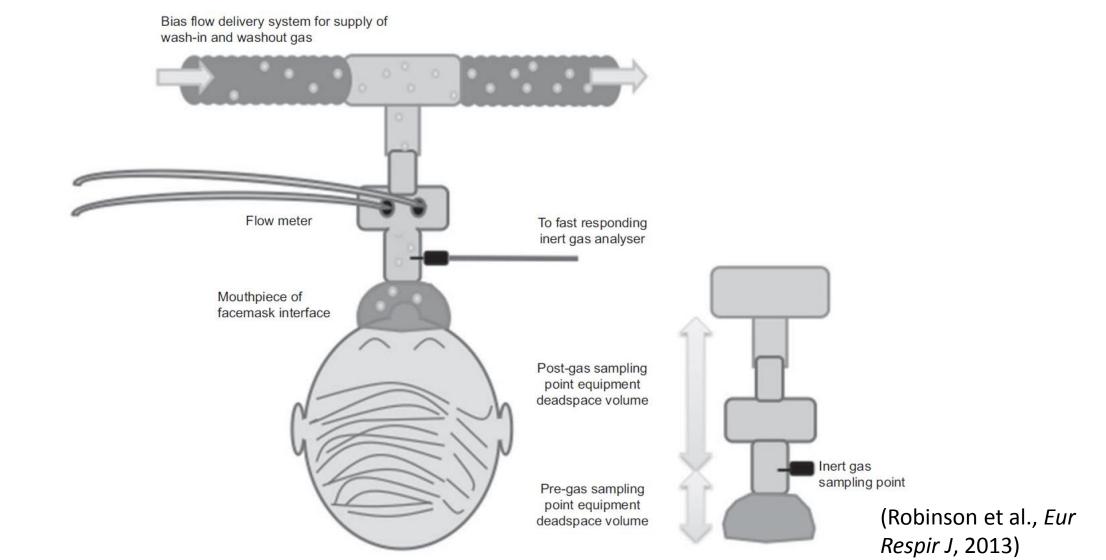

Certainty: Low

Benefit: Moderate

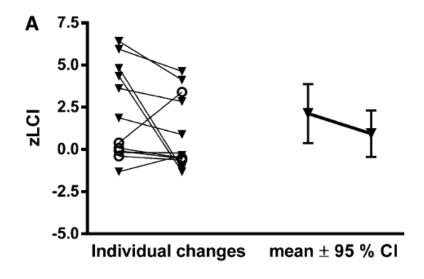
Consensus recommendation

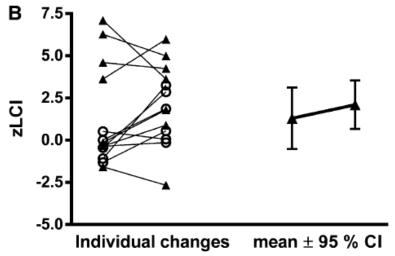
Introduction- Hypertonic saline

Figure 2. Kaplan-Meier Plot of Time to First Exacerbation by Treatment Group



- 344 patients
- Age: 4 to 60 months
- Intervention: Hypertonic vs isotonic fluid X 48 weeks
- Outcome: No difference in pulmonary exacerbations


Evaluation of early lung disease in infants with CF


Test	Advantages	Disadvantages
Pulse oximetry	Widely availableNon Invasive	- Unclear if useful in asymptomatic infants
Chest X-ray	Widely availableMay detect early abnormalitiesMinimal radiation	- Relatively insensitive (vs CT)
CT scan	- Identifies early signs of disease	SedationRadiation (cumulative dose)
Infant PFT	- Sensitive to early abnormalities	SedationExpertise in the techniqueSpecialized equipment
MRI chest	- Identifies early signs of disease	- Sedation
Lung Clearance Index	- Sensitive in early lung disease	 Sedation Research tool Limited knowledge on clinically significant change

Lung clearance index (LCI)

Introduction- Hypertonic saline

- 25 patients
- Age: < 6 years old (10 infants)
- Intervention: Hypertonic vs isotonic fluid X 48 weeks
- Outcome: Hypertonic saline has +ve effects on LCI

Evaluation of early lung disease in infants with CF

Evaluation of carry range are case in infantes when ci					
Test	Advantages	Disadvantages			
Pulse oximetry	Widely availableNon Invasive	- Unclear if useful in asymptomatic infants			
Chest X-ray	Widely availableMay detect early abnormalitiesMinimal radiation	- Relatively insensitive (vs CT)			
CT scan	- Identifies early signs of disease	SedationRadiation (cumulative dose)			
Infant PFT	- Sensitive to early abnormalities	SedationExpertise in the techniqueSpecialize equipment			
MRI chest	- Identifies early signs of disease	- Sedation			
Lung Clearance Index	- Sensitive in early lung disease	SedationResearch toolLimited knowledge on clinically			

significant change

Chest MRI

- Sensitive to detect early abnormalities in lung structure and perfusion
- MRI morphology score:
 - Bronchial wall thickening/bronchiectasis
 - Mucus plugging
 - Sacculation and abscesses
 - Consolidation
 - Pleural reaction
 - Mosaic signal intensity

Preventive Inhalation of Hypertonic Saline in Infants with Cystic Fibrosis (PRESIS): A Randomized, Double-Blind, Controlled Study

Mirjam Stahl^{1,2,3}, Mark O. Wielpütz^{3,4,5}, Isabell Ricklefs^{6,7}, Christian Dopfer^{8,9}, Sandra Barth^{10,11}, Anne Schlegtendal¹², Simon Y. Graeber^{1,2,3,13,14}, Olaf Sommerburg^{2,3}, Gesa Diekmann^{6,7}, Johannes Hüsing¹⁵, Cordula Koerner-Rettberg¹², Lutz Nährlich^{10,11}, Anna-Maria Dittrich^{8,9}, Matthias V. Kopp^{6,7}, and Marcus A. Mall^{1,2,3,13,14}

American Journal of Respiratory and Critical Care Medicine

Published online: November 2018

Introduction

Aim of the study: Explore feasibility, safety and initial efficacy of preventive inhalation of Hypertonic Saline in **young infants** using LCI and MRI as outcome measures.

Methods

- Randomized 1:1, Parallel group, Double-blind, Control trial
- Intervention: 4 ml Hypertonic Saline 6% (HS) vs Isotonic Saline 0.9% (IS) twice daily for 12 months using a jet nebulizer and baby face mask
- Location: 5 CF centers in Germany (DZL)
- Inclusion criteria: Confirmed diagnosis of CF & Age < 4 months

Outcome measures

- Change in LCI
- Chest MRI score
- Anthropometric data (Weight, Height, BMI)
- Rate of pulmonary exacerbations
- Respiratory rate & oxygen saturation
- Detection of pathogens
- Adverse & Serious Adverse Events

Multiple-Breath Washout

- Exhalyzer D system:
 - 4% sulfur hexafluoride as tracer gas
 - Face mask
 - Child lying supine
- Sedation: Chloral hydrate (100 mg/kg body weight)
- LCI determine from acceptable wash-out curves

Chest MRI

- 1.5T MR scanner
- T1- and T2- weighted sequences
- Images assessed for morphological abnormalities by blinded independent reader
- No perfusion studies

Results – Patient flow

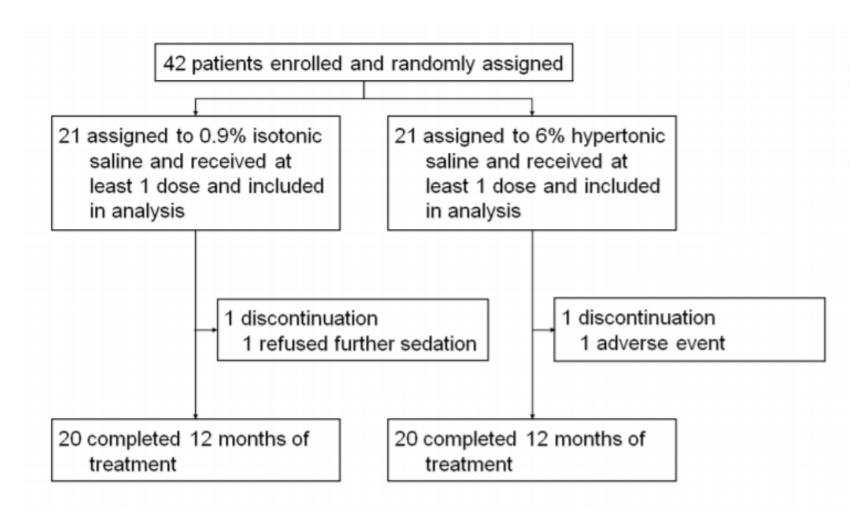


Table 1. Demographics and baseline characteristics of study population

	Isotonic saline	Hypertonic saline
	(n=21)	(n=21)
Age, years	0.26 (0.07)	0.26 (0.08)
range, years	0.09 - 0.35	0.10 - 0.41
Sex, n (males/females)	10/11	10/11
CFTR genotype		
F508del/F508del	11 (52.4)	11 (52.4)
F508del/other	8 (38.1)	6 (28.6)
other/other	2 (9.5)	4 (19.0)
Pancreatic insufficient	20 (95.2)	17 (81.0)
Anthropometry		
Weight, kg	5.2 (1.1)	5.3 (1.1)
Weight z-score	-0.7 (0.9)	-0.6 (1.1)
Height, cm	59.8 (4.0)	59.8 (5.1)
Height z-score	-0.7 (1.2)	-0.6 (1.1)
BMI, kg/m ²	14.4 (1.6)	14.7 (1.6)
BMI z-score	-1.0 (1.0)	-0.8 (1.1)

Table 1. Demographics and baseline characteristics of study population

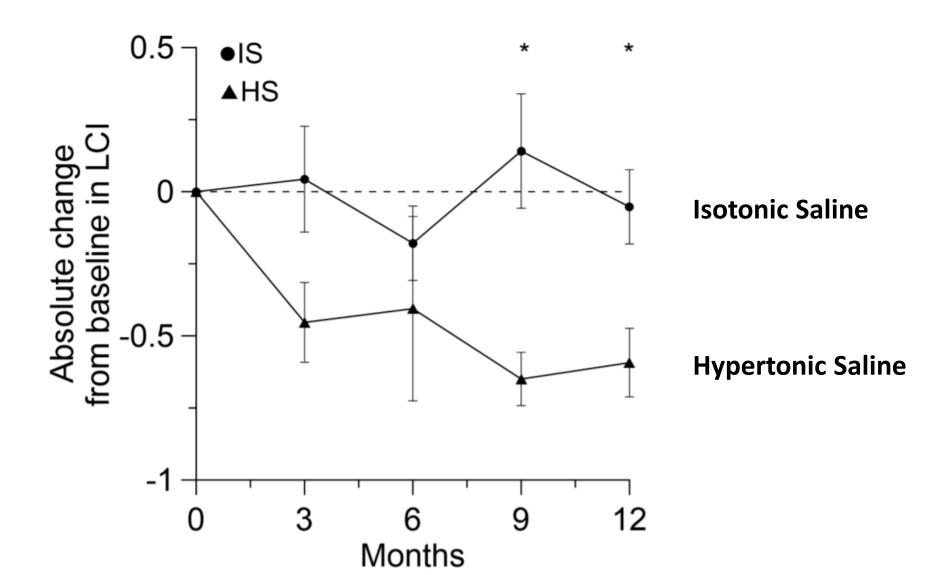
		Isotonic saline Hypertonic saline	
		(n=21)	(n=21)
Mode of diagnosis*			
Positive CF newborn screening		10 (47.6)	10 (47.6)
Meconium ileus/atresia small intes	tine	3 (14.3)	6 (28.6)
Prenatal/positive family history		2 (9.5)	4 (19.0)
Failure to thrive		4 (19.0)	1 (4.8)
Respiratory symptoms		2 (9.5)	0 (0.0)
Positive respiratory culture [†]			
Staphylococcus aureus		6 (28.6)	4 (19.0)
Haemophilus influenzae		0 (0.0)	0 (0.0)
Pseudomonas aeruginosa		0 (0.0)	0 (0.0)
Streptococcus pneumoniae		0 (0.0)	0 (0.0)
Aspergillus species		0 (0.0)	1 (4.8)
Resting respiratory rate, breaths/min		41.3 (11.5)	39.2 (10.7)
Oximetry, %		98.8 (1.1)	98.5 (1.3)
LCI		7.2 (0.7)	7.5 (0.7)
Chest MRI	1.0		
Morphology	Prevalence	95.2 (20/21)	95.2 (20/21)

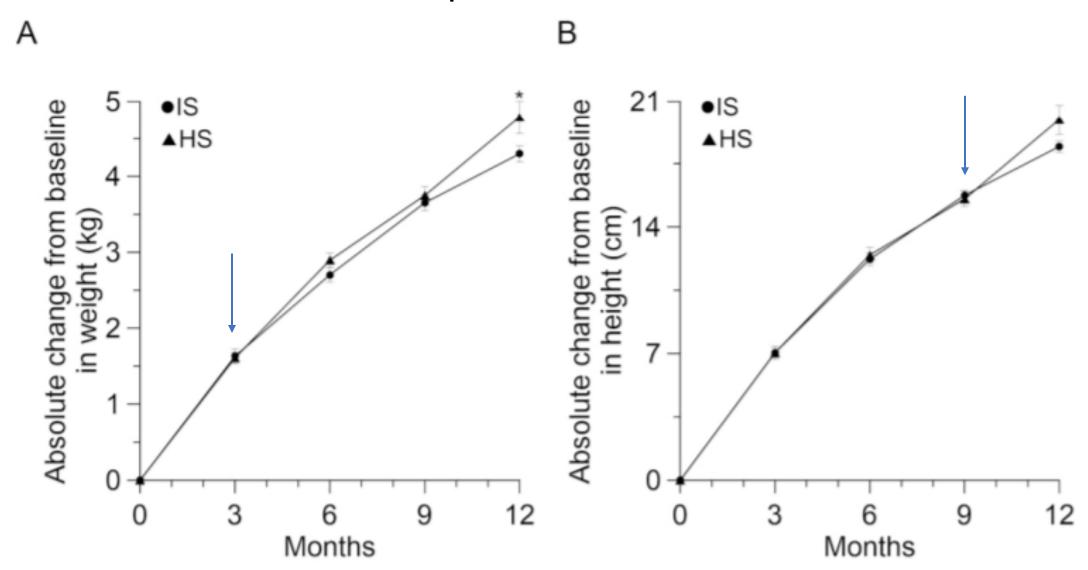
Score

8.0 (4.0 - 13.5)

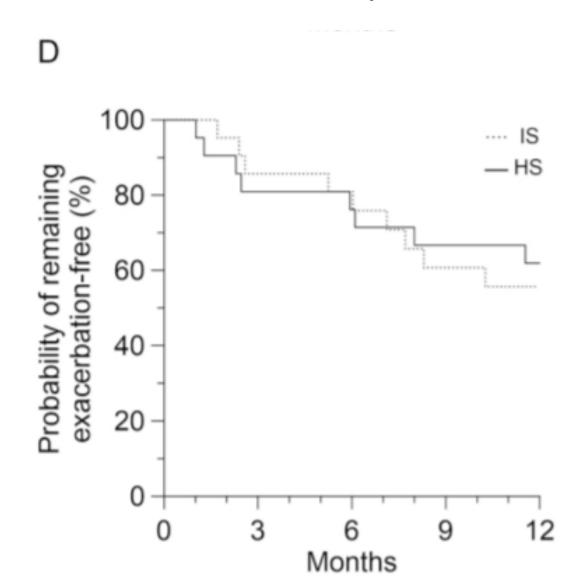
3.0(2.0 - 12.0)

Results- Absolute change LCI




Table 2. Effects of preventive inhalation of hypertonic saline versus isotonic saline in infants with CF

	Isotonic saline	Hypertonic saline	Treatment difference
	(n=20)	(n=20)	vs. isotonic saline
Absolute change in LCI at month 12	-0.1 (-0.5 to 0.4)	-0.6 (-1.0 to 0.2)**	-0.5 (-1.1 to 0.0)*
Absolute change in MRI morphology score at month 12	0.5 (-3.0 to 3.6)	1.9 (-0.5 to 4.3)	1.4 (-2.4 to 5.3)
Absolute change in MRI wall thickening/bronchiectasis subscore at month 12	0.8 (0.3 to 1.4)**	1.6 (0.9 to 2.3)***	0.8 (-0.1 to 1.6)
Absolute change in MRI mucus plugging subscore at month 12	0.3 (-0.6 to 1.3)	0.8 (0.0 to 1.5)*	0.5 (-0.7 to 1.6)
Absolute change in MRI consolidation subscore at month 12	-0.5 (-1.0 to 0.0)	-0.6 (-1.1 to 0.0)	-0.1 (-0.8 to 0.6)
Absolute change in MRI pleural reaction subscore at month 12	-0.2 (-0.7 to 0.3)	-0.2 (-0.6 to 0.3)	0.1 (-0.6 to 0.7)
Absolute change in MRI mosaic signal intensity subscore at month 12	0.0 (-1.8 to 1.5)	0.3 (-0.7 to 1.2)	0.3 (-1.5 to 2.0)


Table 2. Effects of preventive inhalation of hypertonic saline versus isotonic saline in infants with CF

	Isotonic saline	Hypertonic saline	Treatment difference
	(n=20)	(n=20)	vs. isotonic saline
Absolute change in weight (kg) through month 12	4.3 (4.0 to 4.7)***	4.8 (4.1 to 5.5)***	0.5 (-0.3 to 1.2)*
Absolute change in weight z-score through month 12	-0.1 (-0.4 to 0.2)	0.3 (-0.4 to 0.9)	0.3 (-0.3 to 0.1)
Absolute change in height (cm) through month 12	18.5 (17.4 to 19.5)***	20.0 (17.3 to 22.6)***	1.5 (-1.3 to 4.3)
Absolute change in height z-score through month 12	0.3 (-0.1 to 0.6)	0.9 (-0.3 to 2.1)	0.6 (-0.6 to 1.8)
Absolute change in BMI (kg/m²) through month 12	1.1 (0.3 to 1.9)**	1.2 (0.5 to 1.9)**	0.2 (-0.9 to 1.2)
Absolute change in BMI z-score through month 12	0.2 (-0.5 to 0.8)	0.3 (-0.2 to 0.8)	0.1 (-0.7 to 0.9)
Absolute change in resting respiratory rate (breaths/min) at month 12	-9.9 (-15.7 to -3.9)***	-10.3 (-16.6 to -4.0)**	-0.4 (-8.5 to 7.7)
Absolute change in oximetry (%) at month 12	-1.6 (-2.4 to -0.9)***	-1.3 (-2.3 to -0.2)*	0.4 (-0.9 to 1.7)

Results- Anthropometric measurements

Results- Pulmonary exacerbations

Results- Microbiology

- Low prevalence and acquisition of upper airway infection with
 - Staphylococcus aureus
 - Haemophilus influenzae
 - Pseudomonas aeruginosa
 - Streptococcus pneumoniae
 - Aspergillus species
- No difference in between groups.

Table 3. Treatment-emergent adverse events

Table 3. Treatment-emergent adverse e		c saline	Hyperto	nic saline	
	(n=	=21)	(n=21)		
	Affected	Occurred	Affected	Occurred	
	infants	events	infants	events	
All adverse events	21 (100)	240 (100)	21 (100)	219 (100)	
All adverse events with incidence > 5%	in any treatm	nent group:			
Infection of upper respiratory tract without fever	17 (81.0)	52 (21.7)	16 (76.2)	41 (18.7)	
Rhinorrhea	10 (47.6)	17 (7.1)	17 (81.0)	31 (14.2)	
Cough	12 (57.1)	34 (14.2)	14 (66.7)	25 (11.4)	
Infection of upper and lower respiratory tract without fever	7 (33.3)	9 (3.8)	9 (42.9)	13 (5.9)	
Infection of upper respiratory tract with fever	8 (38.1)	13 (5.4)	7 (33.3)	9 (4.1)	
Infection of upper and lower respiratory tract with fever	7 (33.3)	8 (3.3)	6 (28.6)	10 (4.6)	
Abdominal distension / flatulence	4 (19.0)	4 (1.7)	8 (38.1)	8 (3.7)	
Fever	6 (28.6)	7 (2.9)	5 (23.8)	10 (4.6)	
Diarrhea	6 (28.6)	7 (2.9)	5 (23.8)	9 (4.1)	
Infection of lower respiratory tract without fever	6 (28.6)	7 (2.9)	3 (14.3)	10 (4.6)	

Table 3. Treatment-emergent adverse events

	Isotoni	Isotonic saline		Hypertonic saline		
	(n=21)		(n	=21)		
	Affected	Occurred	Affected	Occurred		
	infants	events	infants	events		
Conjunctivitis	5 (23.8)	9 (3.8)	2 (9.5)	3 (1.4)		
Gastroenteritis	3 (14.3)	4 (1.7)	4 (19.0)	7 (3.2)		
Otitis media	4 (19.0)	7 (2.9)	3 (14.3)	3 (1.4)		
Obstructive bronchitis	4 (19.0)	9 (3.8)	1 (4.8)	1 (0.5)		
Abdominal pain	3 (14.3)	5 (2.1)	2 (9.5)	2 (0.9)		
Constipation	3 (14.3)	4 (1.7)	2 (9.5)	3 (1.4)		
Dyspnea	2 (9.5)	4 (1.7)	3 (14.3)	3 (1.4)		
First detection of P. aeruginosa	2 (9.5)	2 (0.8)	3 (14.3)	3 (1.4)		
Nasal congestion	2 (9.5)	2 (0.8)	3 (14.3)	3 (1.4)		
Candida nappy rash	1 (4.8)	1 (0.4)	3 (14.3)	3 (1.4)		
Exanthema subitum	2 (9.5)	2 (0.8)	2 (9.5)	2 (0.9)		
Iron deficiency anemia	3 (14.3)	3 (1.3)	1 (4.8)	1 (0.5)		
Salt loss syndrome	2 (9.5)	3 (1.3)	1 (4.8)	1 (0.5)		
Urticaria	2 (9.5)	2 (0.8)	1 (4.8)	1 (0.5)		
Bronchopulmonary secretion	1 (4.8)	1 (0.4)	2 (9.5)	2 (0.9)		

Results- Summary

- Infants treated with inhaled HS:
 - Rapid and sustained decrease in mean LCI
 - Increased absolute weight
- No difference in pulmonary exacerbation rates, RR & O2 saturation
- No difference in pulmonary pathogens

Discussion- Adherence to therapy

- Adherence high and comparable in both groups according to the medication diary completed by the parents
- Low dropout rates

Discussion-Trajectories of LCI

Healthy infants	AREST CF (2015)	Subbarao (2013)	PRESIS (2018)
	If never infected By 0.5 units	Hypertonic	Hypertonic
	If hx of infection	Isotonic	Isotonic

Discussion- MRI findings

- No change
- Authors speculate lack of perfusion study makes the measurement more coarse and not detect small differences

Critical appraisal

Strengths

- Age range substantial lower than what has been previously studied in RCTs
- Well blinded and randomized

Limitations

- Isotonic Saline is an active comparator
- MRI score might not be sensitive enough to detect early disease
- Small study (n=42)
- No compared medication list available

Points for discussion

- Applicability:
 - Does this study apply to your patient population?
 - How many of you start hypertonic saline routinely in asymptomatic infants?
 - Would this article change your practice?

References

- 1) Ratjen, F. (2006). Restoring Airway Surface Liquid in Cystic Fibrosis. *New England Journal of Medicine*, 354(3), 291-293. doi:10.1056/nejme058293
- 2) Elkins, M. R., Robinson, M., Rose, B. R., Harbour, C., Moriarty, C. P., Marks, G. B., . . . Bye, P. T. (2006). A Controlled Trial of Long-Term Inhaled Hypertonic Saline in Patients with Cystic Fibrosis. *New England Journal of Medicine*, 354(3), 229-240. doi:10.1056/nejmoa043900
- 3) Borowitz D, Robinson KA, Rosenfeld M, et al. Cystic Fibrosis Foundation evidence-based guidelines for management of infants with cystic fibrosis. *J Pediatr*. 2009 Dec; 155(6 Suppl):S73-S93.
- 4) Rosenfeld, M., Ratjen, F., Brumback, L., Daniel, S., Rowbotham, R., Mcnamara, S., . . . Group, F. T. (2012). Inhaled Hypertonic Saline in Infants and Children Younger Than 6 Years With Cystic Fibrosis. *Jama*, 307(21). doi:10.1001/jama.2012.5214
- 5) Robinson, P. D., Latzin, P., Verbanck, S., Hall, G. L., Horsley, A., Gappa, M., . . . Gustafsson, P. M. (2013). Consensus statement for inert gas washout measurement using multiple- and single-breath tests. *European Respiratory Journal*, 41(3), 507-522. doi:10.1183/09031936.00069712
- 6) Subbarao, P., Stanojevic, S., Brown, M., Jensen, R., Rosenfeld, M., Davis, S., . . . Ratjen, F. (2013). Lung Clearance Index as an Outcome Measure for Clinical Trials in Young Children with Cystic Fibrosis. A Pilot Study Using Inhaled Hypertonic Saline. *American Journal of Respiratory and Critical Care Medicine*, 188(4), 456-460. doi:10.1164/rccm.201302-0219oc

Standard statistical analysis

- SPSS 22.0 and SAS 9.4 with standard statistical analysis.
- For categorical data: Chi-square test or Fisher's exact test
- Continuous data: Unpaired Student t-test or one-way ANOVA with least significant difference-Bonferroni post-hoc test or Wilcoxon signed-rank test.
- Anthropometry: Hierarchical linear mixed regression model.

Additional slide: ISIS 2012

Table 2. Comparison of Pulmonary Exacerbation Rates and Related End P	Hypertonic Sal Saline Rati	Hypertonic Saline to Isotonic Saline Ratio (95% CI)		
End Point	Hypertonic Saline	Isotonic Saline	Unadjusted	Adjusted ^a
Pulmonary exacerbations rate, events/person-year (95% CI) ^b	2.3 (2.0-2.5)	2.3 (2.1-2.6)	0.97 (0.83-1.13)	0.98 (0.84-1.15)
Total No. of treatment days for a pulmonary exacerbation, mean (95% CI) ^c	60 (49-70)	52 (63-71)	1.13 (0.91-1.40)	1.11 (0.89-1.37)
First pulmonary exacerbation, hypertonic saline/isotonic saline, HR (95% CI)			0.94 (0.74-1.21)	0.94 (0.73-1.22)